|
|
Constitutive model of saturated fractured porous rock mass based on mixture theory |
Yayuan HU(),Fei YE |
Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract Considering the relationship between strain and pressure of solid in the saturated fractured porous rock mass, a new constitutive model was developed to enhance the theoretical foundation for determining the mechanical parameter values of the model. Within the framework of mixture theory, the solid volumetric strain was decomposed into the volumetric strain of fractured skeleton, porous skeleton, and rock material according to the deformation characteristics. Assuming the strain only depended on the conjugate stress in the energy equation, a constitutive model of saturated fractured porous rock mass was developed by the free-energy potential function, and a method for determining the values of mechanical parameters was derived according to the mechanical meaning of the model. The governing equations for fluid-solid coupling were deduced using Darcy’s law. The analysis of the one-dimensional consolidation case showed that, compared with previous parameter value methods, the initial fluid pressure calculated using the parameters determined in the derived method was lower, the initial settlement was larger, and the dissipation of pore excess pressure lagged behind the fracture excess pressure. The sensitivity analysis of the parameters showed that increasing the permeability coefficient ratio greatly improved the consolidation rate of the rock mass while increasing the shape factor had little impact on the dissipation of fracture excess pressure and rock mass settlement.
|
Received: 29 June 2023
Published: 01 July 2024
|
|
Fund: 国家自然科学基金资助项目(52178360). |
基于混合物理论的饱和孔隙-裂隙岩体本构模型
考虑饱和孔隙-裂隙岩体中固相材料应变与固相材料压力间的关系,完善模型力学参数的取值理论依据,建立新的本构模型. 在混合物理论框架内,依据变形特征将固相体应变分解为裂隙骨架体应变、孔隙骨架体应变、岩块材料体应变. 假定应变仅取决于能量方程中的共轭应力,基于自由能势函数构建饱和孔隙-裂隙岩体本构模型,根据模型力学含义推导模型力学参数取值方法. 结合达西定律建立流固耦合控制方程. 一维固结算例分析表明,相比其他方法确定的参数,所提方法确定参数计算的初始超孔压偏低、初始沉降偏大,孔隙超孔压消散滞后于裂隙超孔压. 参数敏感性分析表明,增大渗透系数比会显著提高岩体固结速率,增大形状系数对裂隙超孔压消散和岩体沉降影响较小.
关键词:
饱和孔隙-裂隙岩体,
混合物理论,
岩块材料变形,
参数的取值方法,
一维固结
|
|
[1] |
张英, 李鹏, 郭奇峰, 等 水力耦合裂隙岩体变形破坏机制研究进展[J]. 哈尔滨工业大学学报, 2020, 52 (6): 21- 41 ZHANG Ying, LI Peng, GUO Qifeng, et al Research progress of deformation and failure mechanism in fractured rock mass under hydromechanical coupling[J]. Journal of Harbin Institute of Technology, 2020, 52 (6): 21- 41
|
|
|
[2] |
蒋中明, 肖喆臻, 唐栋 坝基岩体裂隙渗流效应数值模拟方法[J]. 水利学报, 2020, 51 (10): 1289- 1298 JIANG Zhongming, XIAO Zhezhen, TANG Dong Numerical analysis method of fluid flow in fractured rock mass of dam foundation[J]. Journal of Hydraulic Engineering, 2020, 51 (10): 1289- 1298
|
|
|
[3] |
张国新 多孔连续介质渗透压力对变形应力影响的数值模拟方法探讨[J]. 水利学报, 2017, 48 (6): 640- 650 ZHANG Guoxin Study on numerical simulation method used in analyzing the effect of seepage pressure in continuous medium with pores on deformation and stress[J]. Journal of Hydraulic Engineering, 2017, 48 (6): 640- 650
|
|
|
[4] |
BARRENBLATT G I, ZHELTOV I P, KOCHINA I N Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J]. Journal of Applied Mathematics and Mechanics, 1960, 24 (5): 1286- 1303
doi: 10.1016/0021-8928(60)90107-6
|
|
|
[5] |
WILSON R K, AIFANTIS E C On the theory of consolidation with double porosity[J]. International Journal of Engineering Science, 1982, 20 (9): 1009- 1035
doi: 10.1016/0020-7225(82)90036-2
|
|
|
[6] |
ELSWORTH D, BAI M Flow-deformation response of dual-porosity media[J]. Journal of Geotechnical Engineering, 1992, 118 (1): 107- 124
doi: 10.1061/(ASCE)0733-9410(1992)118:1(107)
|
|
|
[7] |
BERRYMAN J G, WANG H F The elastic coefficients of double-porosity models for fluid transport in jointed rock[J]. Journal of Geophysical Research: Solid Earth, 1995, 100 (B12): 24611- 24627
doi: 10.1029/95JB02161
|
|
|
[8] |
刘佑荣, 唐辉明. 岩体力学[M]. 北京: 化学工业出版社, 2008: 14–15.
|
|
|
[9] |
张玉军 遍有节理岩体的双重孔隙-裂隙介质热-水-应力耦合模型及有限元分析[J]. 岩石力学与工程学报, 2009, 28 (5): 947- 955 ZHANG Yujun Coupled thermo-hydro-mechanical model and finite element analyses of dual-porosity fractured medium for ubiquitous-joint rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (5): 947- 955
|
|
|
[10] |
BAI M, ELSWORTH D, ROEGIERS J C Multiporosity multipermeability approach to the simulation of naturally fractured reservoirs[J]. Water Resources Research, 1993, 29 (6): 1621- 1633
doi: 10.1029/92WR02746
|
|
|
[11] |
MA Y, FENG J, GE S, et al Constitutive modeling of hydromechanical coupling in double porosity media based on mixture coupling theory[J]. International Journal of Geomechanics, 2023, 23 (6): 04023056
doi: 10.1061/IJGNAI.GMENG-7731
|
|
|
[12] |
BORJA R I, KOLIJI A On the effective stress in unsaturated porous continua with double porosity[J]. Journal of the Mechanics and Physics of Solids, 2009, 57 (8): 1182- 1193
doi: 10.1016/j.jmps.2009.04.014
|
|
|
[13] |
LI J, YIN Z Y, CUI Y, et al Work input analysis for soils with double porosity and application to the hydromechanical modeling of unsaturated expansive clays[J]. Canadian Geotechnical Journal, 2017, 54 (2): 173- 187
doi: 10.1139/cgj-2015-0574
|
|
|
[14] |
GUO G, FALL M Modelling of dilatancy-controlled gas flow in saturated bentonite with double porosity and double effective stress concepts[J]. Engineering Geology, 2018, 243: 253- 271
doi: 10.1016/j.enggeo.2018.07.002
|
|
|
[15] |
胡亚元 基于嵌套思路的饱和孔隙-裂隙介质本构理论[J]. 湖南大学学报: 自然科学版, 2021, 48 (1): 19- 29 HU Yayuan Constitutive theory of saturated pore-fracture media based on nested way[J]. Journal of Hunan University: Natural Sciences, 2021, 48 (1): 19- 29
|
|
|
[16] |
HU Y Y Coupling model of saturated fissured porous media based on porosity-dependent skeleton strains and nesting concept[J]. Computers and Geotechnics, 2022, 151: 104942
doi: 10.1016/j.compgeo.2022.104942
|
|
|
[17] |
李学丰, 王奇, 王兴 岩石细观裂隙组构的平面测定方法[J]. 浙江大学学报: 工学版, 2016, 50 (10): 2037- 2044 LI Xuefeng, WANG Qi, WANG Xing Determination of mesoscopic crack fabric for rock on plan[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (10): 2037- 2044
|
|
|
[18] |
蒋宇静, 李博, 王刚, 等 岩石裂隙渗流特性试验研究的新进展[J]. 岩石力学与工程学报, 2008, 27 (12): 2377- 2386 JIANG Yujing, LI Bo, WANG Gang, et al New advances in experimental study on seepage characteristics of rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27 (12): 2377- 2386
doi: 10.3321/j.issn:1000-6915.2008.12.001
|
|
|
[19] |
聂绍凯, 刘鹏飞, 巴特, 等 基于微流控芯片模型的渗流实验与数值模拟[J]. 浙江大学学报: 工学版, 2023, 57 (5): 967- 976 NIE Shaokai, LIU Pengfei, BA Te, et al Seepage experiment and numerical simulation based on microfluidic chip model[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (5): 967- 976
|
|
|
[20] |
HUDSON J A, HARRISON J P, POPESCU M E Engineering rock mechanics: an introduction to the principles[J]. Applied Mechanics Reviews, 2000, 55 (2): B30
|
|
|
[21] |
CHENG A H D. Poroelasticity: Theory and Applications of Transport in Porous Media [M]. [S.l.]: Springer, 2016: 104–105.
|
|
|
[22] |
CHENG A H D Intrinsic material constants of poroelasticity[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142: 104754
doi: 10.1016/j.ijrmms.2021.104754
|
|
|
[23] |
GUO H, TANG H, WU Y, et al Gas seepage in underground coal seams: application of the equivalent scale of coal matrix-fracture structures in coal permeability measurements[J]. Fuel, 2021, 288: 119641
doi: 10.1016/j.fuel.2020.119641
|
|
|
[24] |
ROBERTSON E P. Measurement and modeling of sorption-induced strain and permeability changes in coal [D]: Idaho Falls: Idaho National Lab, 2005.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|