Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (4): 838-846    DOI: 10.3785/j.issn.1008-973X.2024.04.019
    
Analytical study of steady state seepage field of tunnel vault leakage
Jun YU(),Dongkai LI
1. School of Civil Engineering, Central South University, Changsha 410075, China
Download: HTML     PDF(1653KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to solve the steady state seepage flow of tunnel vault leakage without sediment influx, an explicit analytical solution of the steady state seepage field of the vault leakage was derived by combining the conformal mapping method and the separate variable method. The PLAXIS finite element software was applied to establish a numerical model to verify the correctness of the solution obtained in terms of the seepage field distribution and the lining water pressure, and the accuracy of the solution was illustrated by comparing the seepage volume with the existing analytical solutions, the numerical solutions and the experimental results. A parametric analysis was carried out to investigate the effect laws of the tunnel burial depth and the seepage width on the lining water pressure and the seepage volume. Results show that the lining water pressure decreases significantly within ±60° of the centre of the leakage location, with the increase in the tunnel burial depth the maximum lining water pressure decreases, the seepage volume first decreases and then increases, and the tunnel burial depth corresponding to the minimum value of the seepage volume increases with the increase in the surface water head. As the leakage width increases the maximum lining water pressure decreases and the seepage volume increases. When the leakage width exceeds 0.05 m, the effect of changes in the width on the water pressure and the seepage volume is less. Leakage control at low leakage widths is effective.



Key wordstunnel vault      water leakage      conformal mapping      separate variable method      analytical study of seepage field      water pressure      seepage volume     
Received: 12 April 2023      Published: 27 March 2024
CLC:  TU 45  
Fund:  国家自然科学基金资助项目(52078496).
Cite this article:

Jun YU,Dongkai LI. Analytical study of steady state seepage field of tunnel vault leakage. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 838-846.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.04.019     OR     https://www.zjujournals.com/eng/Y2024/V58/I4/838


隧道拱顶渗漏稳态渗流场的解析研究

针对隧道运营中发生拱顶渗漏且无泥沙涌入的稳态渗流情况,结合保角变换法和分离变量法推导出隧道拱顶渗漏稳态渗流场的显式解析解. 应用PLAXIS有限元软件建立数值模型,从渗流场分布、衬砌水压力两方面验证所得解的正确性,通过与现有解析解、数值解、试验结果的渗流量对比来验证所得解的准确性. 进行参数分析,探究隧道埋深、渗漏宽度对衬砌水压力和渗流量的影响规律. 结果表明,衬砌水压力在以渗漏位置为中心±60°范围内明显降低;随着隧道埋深的增大,衬砌最大水压力减小,渗流量先减小后增大,且渗流量最小值对应的隧道埋深随着地表水头的增大而增大;随着渗漏宽度的增大,衬砌最大水压力减小,渗流量增大,当渗漏宽度大于0.05 m时,渗漏宽度变化对水压力和渗流量的影响较小;在渗漏宽度较小时进行渗漏控制的效果明显.


关键词: 隧道拱顶,  渗漏水,  保角变换,  分离变量法,  渗流场解析研究,  水压,  渗流量 
Fig.1 Tunnel plane model
Fig.2 Diagram of conformal mapping
Fig.3 Influence of level terms number on water head calculations results of central axis above tunnel
Fig.4 Seepage volumes for different surface water head conditions
Fig.5 Seepage volumes for different leakage widths
Fig.6 PLAXIS model diagram
Fig.7 Comparison of water head calculation results
Fig.8 Comparison of lining water pressure calculation results
Fig.9 Diagram of water pressure distribution on tunnel lining for different burial depths
Fig.10 Influence of tunnel burial depth on maximum lining water pressure
Fig.11 Influence of tunnel burial depth on seepage volume at leakage site
Fig.12 Diagram of water pressure distribution on tunnel lining for different leakage widths
Fig.13 Influence of leakage width on maximum lining water pressure
Fig.14 Influence of leakage width on seepage volume at leakage site
[1]   董飞, 房倩, 张顶立, 等 北京地铁运营隧道病害状态分析[J]. 土木工程学报, 2017, 50 (6): 104- 113
DONG Fei, FANG Qian, ZHANG Dingli, et al Analysis on defects of operational metro tunnels in Beijing[J]. China Civil Engineering Journal, 2017, 50 (6): 104- 113
[2]   吴江滨, 张顶立, 王梦恕 铁路运营隧道病害现状及检测评估[J]. 中国安全科学学报, 2003, 13 (6): 49- 52
WU Jiangbin, ZHANG Dingli, WANG Mengshu Current damage situation of railway operation tunnels and their inspection and evaluation[J]. China Safety Science Journal, 2003, 13 (6): 49- 52
[3]   刘建航, 侯学渊. 盾构法隧道[M]. 北京: 中国铁道出版社, 1991.
[4]   ARJNOI P, JEONG J H, KIM C Y, et al Effect of drainage conditions on porewater pressure distributions and lining stresses in drained tunnels[J]. Tunnelling and Underground Space Technology, 2009, 24 (4): 376- 389
doi: 10.1016/j.tust.2008.10.006
[5]   LEE I M, NAM S W The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels[J]. Tunnelling and Underground Space Technology, 2001, 16 (1): 31- 40
doi: 10.1016/S0886-7798(01)00028-1
[6]   SHIN J H, ADDENBROOKE T I, POTTS D M A numerical study of the effect of groundwater movement on long-term tunnel behaviour[J]. Géotechnique, 2002, 52 (6): 391- 403
[7]   WONGSAROJ J, SOGA K, MAIR R J Tunnelling-induced consolidation settlements in London Clay[J]. Géotechnique, 2013, 63 (13): 1103- 1115
[8]   IVARS D M Water inflow into excavations in fractured rock: a three-dimensional hydro-mechanical numerical study[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43 (5): 705- 725
doi: 10.1016/j.ijrmms.2005.11.009
[9]   ZHANG D M, MA L X, ZHANG J, et al Ground and tunnel responses induced by partial leakage in saturated clay with anisotropic permeability[J]. Engineering Geology, 2015, 189: 104- 115
doi: 10.1016/j.enggeo.2015.02.005
[10]   YANG J, YIN Z Y, LAOUAFA F, et al Numerical analysis of internal erosion impact on underground structures: application to tunnel leakage[J]. Geomechanics for Energy and the Environment, 2022, 31: 100378
doi: 10.1016/j.gete.2022.100378
[11]   郑刚, 戴轩 灾害环境下隧道不同部位漏水对于周围土体及平行隧道的影响研究[J]. 岩石力学与工程学报, 2015, 34 (Suppl.1): 3196- 3207
ZHENG Gang, DAI Xuan Influence of different leakage positions of tunnel on surrounding soils and parallel tunnel under disaster environment[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (Suppl.1): 3196- 3207
[12]   刘印, 张冬梅, 黄宏伟 基于纵向不均匀沉降的盾构隧道渗漏水机理分析[J]. 铁道工程学报, 2011, 28 (5): 66- 70
LIU Yin, ZHANG Dongmei, HUANG Hongwei Analysis of mechanism of water leakage induced by longitudinal uneven settlement of shield tunnel[J]. Journal of Railway Engineering Society, 2011, 28 (5): 66- 70
[13]   WU H M, SHEN S L, CHEN R P, et al Three-dimensional numerical modelling on localised leakage in segmental lining of shield tunnels[J]. Computers and Geotechnics, 2020, 122: 103549
doi: 10.1016/j.compgeo.2020.103549
[14]   HARR M E. Groundwater and seepage [M]. New York: McGraw-Hill, 1962.
[15]   PARK K H, OWATSIRIWONG A, LEE J G Analytical solution for steady-state groundwater inflow into a drained circular tunnel in a semi-infinite aquifer: a revisit[J]. Tunnelling and Underground Space Technology, 2008, 23 (2): 206- 209
doi: 10.1016/j.tust.2007.02.004
[16]   贺志军, 莫海强, 邹金锋, 等 水下椭圆形隧道稳定渗流的近似解[J]. 铁道科学与工程学报, 2019, 16 (9): 2265- 2273
HE Zhijun, MO Haiqiang, ZOU Jinfeng, et al Approximate analytical solutions for steady seepage into an underwater elliptical tunnel[J]. Journal of Railway Science and Engineering, 2019, 16 (9): 2265- 2273
[17]   LI L, CHEN H, LI J, et al A semi-analytical solution to steady-state groundwater inflow into a circular tunnel considering anisotropic permeability[J]. Tunnelling and Underground Space Technology, 2021, 116: 104115
doi: 10.1016/j.tust.2021.104115
[18]   HUANGFU M, WANG M S, TAN Z S Analytical solutions for steady seepage into an underwater circular tunnel[J]. Tunnelling and Underground Space Technology, 2010, 25 (4): 391- 396
doi: 10.1016/j.tust.2010.02.002
[19]   潘以恒, 罗其奇, 周斌, 等 半无限平面含注浆圈深埋隧道渗流场解析研究[J]. 浙江大学学报: 工学版, 2018, 52 (6): 1114- 1122
PAN Yiheng, LUO Qiqi, ZHOU Bin, et al Analytical study on seepage field of deep tunnel with grouting circle in half plane[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (6): 1114- 1122
[20]   应宏伟, 朱成伟, 龚晓南 考虑注浆圈作用水下隧道渗流场解析解[J]. 浙江大学学报: 工学版, 2016, 50 (6): 1018- 1023
YING Hongwei, ZHU Chengwei, GONG Xiaonan Analytical solution on seepage field of underwater tunnel considering grouting circle[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (6): 1018- 1023
[21]   LI P f, WANG F, LONG Y, et al. Investigation of steady water inflow into a subsea grouted tunnel [J] Tunnelling and Underground Space Technology , 2018, 80: 92-102.
[22]   李杰, 莫海强 考虑注浆圈情况下的任意形状隧道渗流场研究[J]. 铁道科学与工程学报, 2020, 17 (5): 1228- 1234
LI Jie, MO Haiqiang Study on seepage into arbitrary shape tunnel considering grouting ring[J]. Journal of Railway Science and Engineering, 2020, 17 (5): 1228- 1234
[23]   GUO S, ZHANG T, ZHANG Y, et al An approximate solution for two-dimensional groundwater infiltration in sewer systems[J]. Water Science and Technology, 2013, 67 (2): 347- 352
doi: 10.2166/wst.2012.568
[24]   TANG Y, CHAN D H, ZHU D Z, et al An analytical solution for steady seepage into a defective pipe[J]. Water Supply, 2018, 18 (3): 926- 935
doi: 10.2166/ws.2017.168
[25]   SIMHA K R Y, MOHAPATRA S S Stress concentration around irregular holes using complex variable method[J]. Sadhana, 1998, 23: 393- 412
doi: 10.1007/BF02745750
[26]   LI P, WANG F, LONG Y, et al Investigation of steady water inflow into a subsea grouted tunnel[J]. Tunnelling and Underground Space Technology, 2018, 80: 92- 102
doi: 10.1016/j.tust.2018.06.003
[1] Chun-xiao LIU,Lian-jin TAO,Jin BIAN,Yu ZHANG,Jin-hua FENG,Xi-tong DAI,Zhao-qing WANG. Shaking table test of seismic effect of liquefiable soil layer on underground structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1327-1338.
[2] Jian-hui FU,Jin WANG,Guo-dong LU,Yoong-ho JUNG. Voxel-based recognition and visualization of water leakage gaps for automobile assembly[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 357-364.
[3] Ya-feng LI,Ru-song NIE,Wu-ming LENG,Long-hu CHENG,Hui-hao MEI,Jun-li DONG. Deformation characteristics of fine-grained soil under cyclic dynamic loading with intermittence[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2109-2119.
[4] LI Lin-yi, YANG Jun-sheng, ZHANG Zheng, MA Yan-na, ZHANG Cong, BAO De-yong. Analytical study of seepage field of deep-buried central ditch drainage tunnel[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2050-2057.
[5] YING Hong-wei,ZHANG Li-sha,XIE Kang-he,HUANG Da-zhong. Pore and earth pressure response to groundwater fluctuation out of foundation pit[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 492-497.
[6] WU Yong, PEI Xiang-jun, HE Si-ming, LI Xin-po. Hydraulic mechanism of gully bed erosion by debris flow in rainfall[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1585-1592.
[7] ZHAO Quan-li, SUN Hong-yue, SHANG Yue-quan, WANG Zhi-lei. Effect of temporal and spatial variation of pore water pressure induced by confined groundwater on slope stability[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1366-1372.
[8] HU Yun-jin,ZHONG Zhen,HUANG Dong-jun,FENG Shi-neng. Selection criteria for lining structure type of pressure tunnel[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1314-1318.
[9] NIE Yong, WANG Qing-feng, TANG Jian-zhong. High precision pressure control in large closed water volume[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(10): 1821-1826.