Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (3): 552-561    DOI: 10.3785/j.issn.1008-973X.2023.03.013
    
Grouting technology for surface soft soil in coastal tidal karst area and its application
Xiao-jie GAO1(),Zhao-feng LI1,*(),Jiu-qing LIN4,Yun-long SONG2,Shang-jie QING3,Xiang-dong CUI2,Xiao-guang PENG4
1. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, China
2. Shandong Zhengyuan Construction Engineering Limited Company, Jinan 250098, China
3. China Resources Cement (Hepu) Limited Company, Beihai 536119, China
4. China Resources Cement Investments Limited Company, Shenzhen 518001, China
Download: HTML     PDF(3177KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The soil around the first mining area of a company was taken as the research object, aiming at the engineering problems of soft and weak bearing capacity of Quaternary surface soil in coastal karst area. In consideration of the change of water head under tidal action, through the means of indoor model test, the cement-water glass double slurry commonly used in engineering was selected to study the grouting reinforcement of karst surface soft soil layer. Results show that the shape of plasma veins is various in the tidal semitidal and high tide environments, and the advanced grouting technology has the best reinforcement effect. Results also show that the fixed-point grouting technology at the buried depth of 60 cm has the optimal growth rate in the improvement of bearing capacity and water stability characteristics. The maximum increase of compressive strength of the injected soil layer was 46.8%, and the increase range of water stability characteristics was 773 s. The site adopts the fixed-point grouting technology in the half tide period, and the grouting depth is 2/3 of the average depth of the topsoil as the best reinforcement scheme for the coastal karst soft soil layer.



Key wordscoastal karst      soft soil      grouting reinforcement      grouting process      engineering application     
Received: 29 March 2022      Published: 31 March 2023
CLC:  TU 45  
Fund:  山东省重大科技创新工程项目(2021CXGCO10301, 2020CXGC011405);山东省自然科学基金重点项目(ZR2020KE006)
Corresponding Authors: Zhao-feng LI     E-mail: 15005425712@163.com;lizf@sdu.edu.cn
Cite this article:

Xiao-jie GAO,Zhao-feng LI,Jiu-qing LIN,Yun-long SONG,Shang-jie QING,Xiang-dong CUI,Xiao-guang PENG. Grouting technology for surface soft soil in coastal tidal karst area and its application. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 552-561.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.03.013     OR     https://www.zjujournals.com/eng/Y2023/V57/I3/552


滨海潮汐岩溶地表软土注浆技术研究与应用

针对滨海岩溶第四系表层土质地松软、承压能力弱的工程施工难题,以某公司矿山首采区周边土层为研究对象,考虑滨海潮汐作用导致渗流水头变化的特殊因素,通过室内模型试验的手段,选取工程常用水泥-水玻璃双浆液对岩溶表层松软土层进行注浆加固试验研究. 结果表明:潮汐半潮及高潮环境下浆脉形态多样,且前进式注浆工艺加固效果最佳;埋深60 cm处定点注浆技术在承压能力及水稳特性提升方面具有最优的增长速率,被注土层抗压强度最大增幅为46.8%,水稳特性增幅区间为773 s. 确定将现场采用半潮时段定点注浆技术、注浆深度为表土层平均深度的2/3处,作为滨海岩溶上表松软土层的最佳加固方案.


关键词: 滨海岩溶,  松软土层,  注浆加固,  注浆工艺,  工程应用 
Fig.1 Picture of ground cracking and slurry overflow
Fig.2 Diagram of coastal tidal lateral recharge
Fig.3 Gradation curve of soil around karst mining area
rw/c 水泥 C-S p(3 d)/MPa p(7 d)/MPa
ti/h tf /h ti/s tf /s 水泥 C-S 水泥 C-S
0.7∶1 8.5 17.5 52 65 9.1 2.1 12.2 2.5
1∶1 12.5 23 78 88 4.8 1.6 7.9 1.8
1.5∶1 18 49.5 85 95 1.23 0.87 1.78 1.28
Tab.1 Physical and mechanical properties of cement slurry and C-S slurry
Fig.4 Schematic diagram of coastal tidal seepage grouting simulation device
名称 数量 规格/cm 用途
承压钢板 3 L40×L40×H1.5 封闭腔体、承压
被注腔体 1 Φ28×H92 装载被注试样
千斤顶 2 市面常规 压力输出装置
螺纹螺杆 12 ΦH100 连接、固定实验装置
Tab.2 Basic parameters of test device
Fig.5 Sampling diagram of grouting reinforcement test
Fig.6 Slurry vein morphology in low tide environment
Fig.7 Slurry vein morphology of three grouting methods at half tide/high tide
Fig.8 Photo of sampling process and standard sample
Fig.9 Variation curve of compressive strength of samples at different depths with three grouting methods under different tidal environment
Fig.10 Variation curve of water stability characteristic of samples at different depths with three grouting methods under different tidal environment
Fig.11 Variation curve of disintegration rate characteristic of samples at 45 cm depths with three grouting methods under different tidal environment
Fig.12 Diagram of slurry vein diffusion mechanism in coastal environment
Fig.13 Pressure-time curve and pressure of inspection hole
[1]   肖昌林, 粟梅, 苏双凤, 等 六盘水市岩溶发育特征和规律研究[J]. 河南科技, 2020, (23): 156- 158
XIAO Chang-lin, LI Mei, SU Shuang-feng, et al Research on characteristics and laws of karst development in Liupanshui City[J]. Journal of Henan Science and Technology, 2020, (23): 156- 158
[2]   代万品 贵州岩溶地区工程勘察要点研究[J]. 工程技术研究, 2019, 4 (16): 107- 108
DAI Wan-pin Discussion on the key points of engineering investigation in Karst area of Guizhou Province[J]. Engineering and Technology Research, 2019, 4 (16): 107- 108
[3]   CUI Q L, WU H N, SHEN S L, et al Chinese karst geology and measures to prevent geohazards during shield tunnelling in karst region with caves[J]. Natural Hazards, 2015, 77: 129- 152
[4]   WALTHAM T The karst lands of southern China[J]. Geology Today, 2009, 25 (6): 232- 238
doi: 10.1111/j.1365-2451.2009.00736.x
[5]   BALLESTEROS D, GIRALT S, GARCÍA-SANSEGUNDO J, et al Quaternary regional evolution based on karst cave geomorphology in Picos de Europa (Atlantic Margin of the Iberian Peninsula)[J]. Geomorphology, 2019, 336: 133- 151
doi: 10.1016/j.geomorph.2019.04.002
[6]   SZCZYGIEŁ J, GOLICZ M, HERCMAN H, et al Geological constraints on cave development in the plateau-gorge karst of South China (Wulong, Chongqing)[J]. Geomorphology, 2018, 304: 50- 63
[7]   ZHU J Q, LI T Z Catastrophe theory-based risk evaluation model for water and mud inrush and its application in karst tunnels[J]. Journal of Central South University, 2020, 27: 1587- 1598
doi: 10.1007/s11771-020-4392-0
[8]   张庆艳, 陈卫忠, 袁敬强, 等 断层破碎带突水突泥演化特征试验研究[J]. 岩土力学, 2020, 41 (6): 1911- 1922
ZHANG Qing-yan, CHEN Wei-zhong, YUAN Jing-qiang, et al Experimental study on evolution characteristics of water and mud inrush in fault fractured zone[J]. Rock and Soil Mechanics, 2020, 41 (6): 1911- 1922
[9]   韩伟伟, 李术才, 张庆松, 等 矿山帷幕薄弱区综合分析方法研究[J]. 岩石力学与工程学报, 2013, 32 (3): 512- 519
HAN Wei-wei, LI Shu-cai, ZHANG Qing-song, et al A comprehensive analysis method for searching weak zones of grouting curtain in mines[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (3): 512- 519
[10]   卞凯, 周孟然, 胡锋, 等 RF-CARS结合LIF光谱用于矿井涌水的预测评估[J]. 光谱学与光谱分析, 2020, 40 (7): 2170- 2175
BIAN Kai, ZHOU Meng-ran, HU Feng, et al RF-CARSC combined with LIF spectroscopy for prediction and assessment of mine water in flow[J]. Spectroscopy and Spectral Analysis, 2020, 40 (7): 2170- 2175
[11]   张杰, 毕攀, 魏爱华, 等 基于模糊综合法的烟台市栖霞中桥岩溶塌陷易发性评价[J]. 中国岩溶, 2021, 40 (2): 215- 220
ZHANG Jie, BI Pan, WEI Ai-hua, et al Assessment of susceptibility to karst collapse in the Qixia Zhongqiao district of Yantai based on fuzzy comprehensive method[J]. Carsologica Sinica, 2021, 40 (2): 215- 220
[12]   王桂林, 强壮, 曹聪, 等 基于地理探测器与层次分析法的岩溶地面塌陷易发性评价−以重庆中梁山地区为例[J]. 中国岩溶, 2021, 41 (1): 79- 87
WANG Gui-lin, QIANG Zhuang, CAO Cong, et al Evaluation of susceptibility to karst collapse based on the geodetector and analytic hierarchy method: an example of Zhongliangshan area in Chongqing[J]. Carsologica Sinica, 2021, 41 (1): 79- 87
[13]   朱耀庭, 胡文华, 吴福泉, 等 溶洞上覆土层注浆加固应用分析[J]. 武汉理工大学学报: 交通科学与工程版, 2017, 41 (6): 954- 957
ZHU Yao-ting, HU Wen-hua, WU Fu-quan, et al Application analyse on grouting reinforcement in overburden layer of karst cave[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2017, 41 (6): 954- 957
[14]   刘妍, 杨浩军, 吴楚 袖阀管注浆技术在粉土地基中的试验研究及效果评价[J]. 市政技术, 2021, 39 (2): 143- 147
LIU Yan, YANG Hao-jun, WU Chu Study and evaluation of technology of sleeve-valve-pipe grouting applied to silt ground[J]. Journal of Municipal Technology, 2021, 39 (2): 143- 147
[15]   刘奇, 陈卫忠, 袁敬强, 等 岩溶充填黏土注浆加固试验研究[J]. 岩石力学与工程学报, 2019, 38 (Suppl.1): 3179- 3188
LIU Qi, CHEN Wei-zhong, YUAN Jing-qiang, et al Laboratory experiment study of grouted materials filled in karst caverns[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (Suppl.1): 3179- 3188
[16]   张健, 李术才, 李召峰, 等 全风化花岗岩地层单-双液浆加固试验研究[J]. 中南大学学报: 自然科学版, 2018, 49 (12): 3051- 3059
ZHANG Jian, LI Shu-cai, LI Zhao-feng, et al Comparative study of reinforcement patterns between single and double-fluid grouting in fully-weathered granite[J]. Journal of Central South University: Science and Technology, 2018, 49 (12): 3051- 3059
[17]   中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019 [S/OL]. 北京: 中国计划出版社, 2019: 19-20 [2022-03-29]. https://www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/201908/20190801_241309.html.
[18]   中国建筑科学研究院. 软土地区岩土工程勘察规程: JGJ 83—2011[S/OL]. 北京: 中国建筑工业出版社, 2011: 14-23[2022-03-29]. https://wenku.so.com/d/b245957f94d349383622de5b08148645.
[19]   张伟杰, 李术才, 魏久传, 等 三维注浆模型试验系统研制及应用[J]. 岩土力学, 2016, 37 (3): 902- 911
ZHANG Wei-jie, LI Shu-cai, WEI Jiu-chuan, et al Development of a 3D grouting model test system and its application[J]. Rock and Soil Mechanics, 2016, 37 (3): 902- 911
[20]   李召峰, 李术才, 刘人太, 等 富水破碎岩体注浆加固材料试验研究与应用[J]. 岩土力学, 2016, 37 (7): 1937- 1946
LI Zhao-feng, LI Shu-cai, LIU Ren-tai, et al Development of the grouting material for reinforcing water-rich broken rock masses and its application[J]. Rock and Soil Mechanics, 2016, 37 (7): 1937- 1946
[1] Shi-fan QIAO,Zi-yong CAI,Zhen ZHANG,Jun-kun TAN. Behavior of retaining system of narrow-long deep foundation pit in soft soil in Nansha Port Area[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1473-1484.
[2] Ao ZHOU,Bin WANG,Jie-tao LI,Xin ZHOU,Wen-jun XIA. Long-term stability analysis and deformation prediction of soft soil foundation pit in Taihu Tunnel[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 692-701.
[3] Chao-feng ZENG,Huan LIAO,Miao-kun LI,Xiu-li XUE,Guo-xiong MEI. Effect of buttress wall length on retaining wall deflection induced by dewatering[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2252-2259.
[4] DING Zhi, WANG Fan-yong, WEI Xin-jiang. Prediction and analysis of surface deformation caused by twin shield construction in soft soil[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 61-68.
[5] WU Ya-jun, GU Sai-shuai, QIANG Xiao-bing, HUANG Wei-jun, LU Li-hai, LUO Jia-cheng. Experimental study on ultra-soft soil reinforced by vacuum preloading with flocculation based on skeleton construction[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 735-743.
[6] LI Xue-gang, XU Ri-qing, WANG Xing-chen, RONG Xue-ning. Assessment of engineering properties for marine and lacustrine soft soil in Hangzhou[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1346-1352.
[7] XIE Xin-yu, LI Jin-zhu, WANG Wen-jun, LIU Kai-fu, ZHU Xiang-rong. Rheological test and empirical model of Ningbo soft soil[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(1): 64-71.
[8] LI Jin-Zhu, SHU Xiang-Rong, LIU Yong-Hai. Elastoplastic damage constitutive model and its application to
structural soft soil
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(4): 806-811.