Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (11): 2244-2253    DOI: 10.3785/j.issn.1008-973X.2023.11.012
    
Water-rock heat exchange in granite fractures
Ruo-tao LIU1(),Guan RONG1,2,*(),Yan-di WU1,Bo-wen LI1
1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
2. Key Laboratory of Hydraulic Rock Mechanics, Ministry of Education, Wuhan University, Wuhan 430072, China
Download: HTML     PDF(1848KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A rock fracture water-rock heat exchange test system was developed to study the seepage heat transfer in fractured rock masses. Convective heat transfer tests were carried out on granite fissure specimens at different temperatures, volume flow rates and hydraulic openings using the controlled variable method. The fracture seepage flow pattern was analyzed based on the Forchheimer equation, and the effects of temperature, volume flow rate, and hydraulic opening were quantitatively studied by heat transfer coefficient calculation. Sensitivity analysis of each influencing factor was conducted. Results showed that, under the condition of constant volume flow rate and hydraulic opening, the outlet flow temperature and heat transfer coefficient increased as the temperature of the fractured sample increased from 70 ℃ to 100 ℃. Under the condition that the temperature and hydraulic opening of the crack sample remained unchanged, when the volume flow rate changed from 10 mL/min to 80 mL/min, the outlet flow temperature decreased linearly, and the heat transfer coefficient had a power function relationship with the volume flow rate, and its growth rate slowed down with the increase of the volume flow rate. When the temperature and volume flow rate of the crack sample remained unchanged, the heat transfer coefficient decreased linearly when the hydraulic opening of the fissure increased. The heat transfer coefficient increased with the fissure roughness increasing. Sensitivity analysis of influencing factors on the heat transfer coefficient was conducted by the sensitivity function, and results show that the heat transfer coefficient is most affected by the temperature of the crack sample, followed by the volume flow rate of the crack, and least affected by the hydraulic opening.



Key wordsgeothermal development      granite      fissure      heat transfer coefficient      seepage heat transfer     
Received: 23 August 2022      Published: 11 December 2023
CLC:  TU 458  
Fund:  国家自然科学基金资助项目( 41772305,51579189)
Corresponding Authors: Guan RONG     E-mail: liuruotao@whu.edu.cn;rg_mail@163.com
Cite this article:

Ruo-tao LIU,Guan RONG,Yan-di WU,Bo-wen LI. Water-rock heat exchange in granite fractures. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2244-2253.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.11.012     OR     https://www.zjujournals.com/eng/Y2023/V57/I11/2244


花岗岩裂隙中的水-岩换热

为了研究裂隙岩体中的渗流传热问题,研发岩石裂隙水-岩换热试验系统,采用控制变量法对花岗岩裂隙试样开展不同温度、体积流量、水力开度下的对流换热试验. 基于Forchheimer方程分析裂隙渗流流态,计算换热系数,定量研究温度、体积流量、水力开度的影响,并进行各影响因素的敏感性分析. 结果表明,在体积流量和水力开度不变的情况下,随着裂隙试样温度由70 ℃升高到100 ℃,出口水流温度和换热系数均提高;在裂隙试样温度与水力开度不变的情况下,体积流量从10 mL/min 增大到80 mL/min,出口水流温度线性降低,换热系数与体积流量增长关系为幂函数关系,且随着体积流量增大其增长速度减缓;裂隙试样温度与体积流量保持不变,裂隙水力开度增大,换热系数线性减小,裂隙粗糙度增大,换热系数增大. 利用敏感性函数对换热系数进行影响因素的敏感性分析,换热系数受裂隙试样温度的影响最大,其次是裂隙体积流量,影响最小的是水力开度.


关键词: 地热开发,  花岗岩,  裂隙,  换热系数,  渗流传热 
Fig.1 Physical diagram of fracture water-rock heat transfer test system
Fig.2 Flow chart of fractured water-rock heat exchange test
Fig.3 Variation of temperature of water flow at outlet of fissure with volume flow rate
Fig.4 Variation of fracture pressure gradient with volumet flow rate
qV/
(mL·min?1)
h/(W·m?2·K?1)
θ0=70 ℃ θ0=80 ℃ θ0=90 ℃ θ0=100 ℃
10 140.90 176.37 213.94 256.79
20 334.97 370.93 455.73 515.61
30 472.10 555.96 633.69 705.97
40 599.58 708.38 702.37 911.37
50 723.75 780.62 875.88 1011.54
60 738.22 852.37 1031.18 1126.29
70 835.52 960.93 1072.72 1284.38
80 918.01 1178.87 1218.06 1313.51
Tab.1 Variation of heat transfer coefficient with volume flow rate for different fissure specimen temperatures
Fig.5 Variation of heat transfer coefficient with temperature of fissure specimen at different volume flow rates
Fig.6 Variation of heat transfer coefficient difference with volume flow rate at different fracture specimen temperatures
Fig.7 Relationship between normalized heat transfer coefficient and normalized flow velocity for slit specimens
Fig.8 Nonscale analysis of Nusselt, Prandtl and Reynolds numbers
Fig.9 Variation of heat transfer coefficient with fracture hydraulic opening at different volume flow rates
Fig.10 Variation of heat transfer coefficient with fracture roughness at different volume flow rates
Fig.11 Heat transfer coefficient as a function of volume flow rate
Fig.12 Heat transfer coefficient as a function of hydraulic opening of fissure
θ0/℃ S( $q_V^* $) S( $e_{\rm{h}}^* $)
70 0.489 0.204
80 0.574 0.100
90 0.656 0.064
100 0.686 0.129
Tab.2 Sensitivity factors of heat transfer coefficients with respect to volume flow rate and fissure hydraulic opening at different fissure specimen temperatures
岩样编号 S( $q_V^* $) S( $\theta _0^* $)
H1 0.628 0.967
H2 0.686 1.173
H3 0.709 1.190
H4 0.711 1.239
Tab.3 Sensitivity factors of heat transfer coefficients of different rock samples with respect to volume flow rate and temperature of fissure specimens
[1]   BRONICKI L Y. Power stations using locally available energy sources [M]. New York: Springer, 2018.
[2]   KOLDITZ O Modelling flow and heat transfer in fractured rocks: conceptual model of a 3-D deterministic fracture network[J]. Geothermics, 1995, 24 (3): 451- 470
doi: 10.1016/0375-6505(95)00020-Q
[3]   ZHOU X P, ZHANG J Z, YANG S Q, et al Compression-induced crack initiation and growth in flawed rocks: a review[J]. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44 (7): 1681- 1707
doi: 10.1111/ffe.13477
[4]   ZHOU X P, ZHANG J Z, WONG L N Y Experimental study on the growth, coalescence and wrapping behaviors of 3D cross-embedded flaws under uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2018, 51: 1379- 1400
doi: 10.1007/s00603-018-1406-4
[5]   ZHOU X P, WANG Y T, ZHANG J Z, et al Fracturing behavior study of three-flawed specimens by uniaxial compression and 3D digital image correlation: sensitivity to brittleness[J]. Rock Mechanics and Rock Engineering, 2019, 52: 691- 718
doi: 10.1007/s00603-018-1600-4
[6]   MA Y, ZHANG Y, HUANG Y, et al Experimental study on flow and heat transfer characteristics of water flowing through a rock fracture induced by hydraulic fracturing for an enhanced geothermal system[J]. Applied Thermal Engineering, 2019, 154: 433- 441
doi: 10.1016/j.applthermaleng.2019.03.114
[7]   FRANK S, HEINZE T, POLLAK S, et al Transient heat transfer processes in a single rock fracture at high volume flow rates[J]. Geothermics, 2021, 89: 101989
doi: 10.1016/j.geothermics.2020.101989
[8]   王家华, 郭恒 不同围压下粗糙裂隙渗流规律试验研究[J]. 矿业研究与开发, 2022, 42 (9): 99- 104
WANG Jia-hua, GUO Heng Experimental study on seepage law of rough fractures under different confining pressures[J]. Mining Research and Development, 2022, 42 (9): 99- 104
[9]   赵坚 岩石裂隙中的水流-岩石热传导[J]. 岩石力学与工程学报, 1999, 18 (2): 119- 123
ZHAO Jian Experimental study of flow-rock heat transfer in rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18 (2): 119- 123
[10]   BAI B, HE Y Y, LI X C, et al Experimental and analytical study of the overall heat transfer coefficient of water flowing through a single fracture in a granite core[J]. Applied Thermal Engineering, 2017, 116: 79- 90
[11]   李正伟, 张延军, 张驰, 等 花岗岩单裂隙渗流传热特性试验[J]. 岩土力学, 2018, 39 (9): 3261- 3269
LI Zheng-wei, ZHANG Yan-jun, ZHANG Chi, et al Experiment on convection heat transfer characteristics in a single granite fracture[J]. Rock and Soil Mechanics, 2018, 39 (9): 3261- 3269
[12]   黄奕斌, 张延军, 于子望, 等 考虑多级流速下的岩石粗糙单裂隙渗流传热特性试验研究[J]. 岩石力学与工程学报, 2019, 38 (Suppl.1): 2654- 2667
HUANG Yi-bin, ZHANG Yan-jun, YU Zi-wang, et al Experimental study of convection heat transfer characteristics in single rough rock fracture considering multi-level flow rates[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (Suppl.1): 2654- 2667
[13]   HUANG Y, ZHANG Y, YU Z, et al Experimental investigation of seepage and heat transfer in rough fractures for enhanced geothermal systems[J]. Renewable Energy, 2018, 135: 846- 855
[14]   MA Y, ZHANG Y, HU Z, et al Numerical investigation of heat transfer performance of water flowing through a reservoir with two intersecting fractures[J]. Renewable Energy, 2020, 153: 93- 107
doi: 10.1016/j.renene.2020.01.141
[15]   CHAPMAN A J. Heat transfer, 4th edition[M]. London: Macmilan Publishing Company, 1989.
[16]   BAI B, HE Y Y, HU S B An analytical method for determining the convection heat transfer coefficient between flowing fluid and rock fracture walls[J]. Rock Mechanics and Rock Engineering, 2017, 50 (7): 1787- 1799
doi: 10.1007/s00603-017-1202-6
[17]   朱家玲, 张国伟, 李君, 等 裂隙通道内流固换热系数解析解及敏感性分析[J]. 太阳能学报, 2016, 37 (8): 2019- 2025
ZHU Jia-lin, ZHANG Guo-wei, LI Jun, et al Analytical solution and sensitivity analysis of fluid-solid heat transfer coefficient in fracture channel[J]. Acta Energiae Solaris Sinica, 2016, 37 (8): 2019- 2025
[18]   ZHANG G, ZHU J, LI J, et al. The analytical solution of the water-rock heat transfer coefficient and sensitivity analyses of parameters [C]// Proceedings World Geothermal Congress. Melbourne: Thermal Engineering, 2015.
[19]   JIANG Y, YAO H, CUI Y, et al Evaluative analysis of formulas of heat transfer coefficient of rock fracture[J]. International Journal of Thermophysics, 2020, 41 (8): 104
doi: 10.1007/s10765-020-02679-8
[20]   ZHAO Z H On the heat transfer coefficient between rock fracture walls and flowing fluid[J]. Computers and Geotechnics, 2014, 59: 105- 111
doi: 10.1016/j.compgeo.2014.03.002
[21]   姚池, 邵玉龙, 杨建华, 等 非线性渗流对裂隙岩体渗流传热过程的影响[J]. 岩土工程学报, 2020, 42 (6): 1050- 1058
YAO Chi, SHAO Yu-long, YANG Jian-hua, et al Effect of nonlinear seepage on flow and heat transfer process of fractured rocks[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (6): 1050- 1058
[22]   TAN J, RONG G, HE R H, et al Numerical investigation of heat transfer effect on flow behavior in a single fracture[J]. Arabian Journal of Geosciences, 2020, 13 (17): 368- 374
[23]   杜利, 唐果, 詹洪阳, 等 碳酸盐岩酸蚀裂缝渗流-传热特性[J]. 科学技术与工程, 2021, 21 (33): 14333- 14344
DU Li, TANG Guo, ZHAN Hong-yang, et al Seepage and heat transfer characteristics of acid corroded fractures in carbonate rock[J]. Science Technology and Engineering, 2021, 21 (33): 14333- 14344
[24]   惠峥, 冯子军, 武治盛, 等 多级围压下砂岩单裂隙渗流传热试验研究[J]. 矿业研究与开发, 2020, 40 (9): 105- 110
HUI Zheng, FENG Zi-jun, WU Zhi-sheng, et al Experimental study on seepage and heat transfer of sandstone with single fracture under multi-level confining pressure[J]. Mining Research and Development, 2020, 40 (9): 105- 110
[25]   ZHOU J Q, CHEN Y, TANG H, et al Disentangling the simultaneous effects of inertial losses and fracture dilation on permeability of pressurized fractured rocks[J]. Geophysical Research Letters, 2019, 46 (15): 8862- 8871
doi: 10.1029/2019GL083355
[26]   CHEN Y, LIAN H, LIANG W, et al The influence of fracture geometry variation on non-Darcy flow in fractures under confining stresses[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 59- 71
doi: 10.1016/j.ijrmms.2018.11.017
[27]   刘建, 杨巧艳, 白雪, 等 Forchheimer方程参数量化及达西—非达西转变临界点[J]. 西南交通大学学报, 2020, 55 (1): 218- 224
LIU Jian, YANG Qiao-yan, BAI Xue, et al Parameters quantification of Forchheimer equation and critical point of transition from Darcian to non-Darcian flow[J]. Journal of Southwest Jiaotong University, 2020, 55 (1): 218- 224
[28]   ZENG Z, GRIGG R A criterion for non-Darcy flow in porous media[J]. Transport in Porous Media, 2006, 63 (1): 57- 69
doi: 10.1007/s11242-005-2720-3
[29]   CHEN Y, LIANG W, LIAN H, et al Experimental study on the effect of fracture geometric characteristics on the permeability in deformable rough-walled fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 98: 121- 140
doi: 10.1016/j.ijrmms.2017.07.003
[30]   XIAO W, XIA C, WEI W, et al Combined effect of tortuosity and surface roughness on estimation of volume flow rate through a single rough joint[J]. Journal of Geophysics and Engineering, 2013, 10 (4): 045015
doi: 10.1088/1742-2132/10/4/045015
[31]   崔溦, 邹旭, 李正, 等 分形岩石裂隙中渗流扩散运动的试验研究[J]. 岩土力学, 2020, 41 (11): 3553- 3562
CUI Wei, ZOU Xu, LI Zheng, et al Experimental study on seepage diffusion movement in fractal rock fractures[J]. Rock and Soil Mechanics, 2020, 41 (11): 3553- 3562
[32]   LUO S, ZHAO Z, PENG H, et al The role of fracture surface roughness in macroscopic fluid flow and heat transfer in fractured rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 87: 29- 38
doi: 10.1016/j.ijrmms.2016.05.006
[33]   TSO C P, ZHAO J A study in forced convection of water in a single uneven planar rock fracture for geothermal application[J]. Renewable Energy, 1994, 4 (4): 371- 375
doi: 10.1016/0960-1481(94)90043-4
[1] Xiao ZHANG,Hao YU,Zhuang LI,Yan-shun LIU,Zi-dong ZHANG,Xin-yu JI,Xiang-hui LI. Discrete element study on effect of cyclic loading strengthening on meso-destruction of granite[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2303-2312.
[2] Chao ZHANG,Zheng-dong HUANG,Zhong-ming XIONG,Xiao-lu YUAN,You-jun XU,Jia-wang KANG. Seismic response of reinforced concrete frame structure in ground fissures area[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2028-2036.
[3] Song-tao JIN,Chang LIU,Li-ying WANG,Yang YANG. Heat transfer coefficient of passive house exterior wall in cold area[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1966-1976.
[4] LI Te,Rui Zhi yuan,LEI Chun li,GUO Jun feng,HU Chi bing. Simulation of thermal characteristics of high speed spindle considering air gap variation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 941-948.
[5] DENG Xiao-lei, FU Jian-zhong, HE Yong, CHEN Zi-chen. Multi-field coupling thermal characteristics analysis for spindle system of precision CNC machine tool[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1863-1870.
[6] ZHANG Xue-jun, ZHENG Ke-qing, TIAN Xin-jian, QIU Li-min. Parameter analysis and design point of direct-contact
ice slurry generator
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 1136-1140.