Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (9): 1986-1995    DOI: 10.3785/j.issn.1008-973X.2025.09.022
    
Usage prediction of shared bike based on multi-channel graph aggregation attention mechanism
Fujian WANG(),Zetian ZHANG,Xiqun CHEN,Dianhai WANG
Institute of Intelligent Transportation Systems, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(2518KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A prediction method based on the multi-channel graph aggregated attention mechanism was proposed, to address the challenges of limited spatial scope, insufficient spatiotemporal information capture, and low accuracy in short-term bike-sharing demand prediction. Firstly, the city was divided into multiple bike-sharing virtual stations using a flow-adjusted virtual station partitioning method according to bike flows in different areas. A dynamic adjacency matrix was constructed using the origin-destination (OD) matrix between stations to form a bike-sharing graph network structure. Next, spatial information of stations across different time periods was captured via a multi-channel graph aggregation module, which was combined with a multi-head self-attention module to capture temporal correlations. Finally, a cross-attention mechanism, along with exogenous variables, was introduced to uncover potential relationships among various variables. Experiments conducted in Shenzhen and New York demonstrated that the model significantly outperformed other deep learning methods across various time periods and regions, maintaining stable and low prediction errors. The results confirmed that the dynamic adjacency matrix and the cross-attention mechanism integrating external features could effectively enhance the prediction accuracy of shared bike usage.



Key wordsshared bike      multi-source data      deep learning      virtual station partitioning      dynamic adjacency matrix      cross-attention mechanism     
Received: 29 November 2024      Published: 25 August 2025
CLC:  U 484  
Fund:  国家自然科学基金重点资助项目 (52131202);国家自然科学基金重点资助项目 (72431009).
Cite this article:

Fujian WANG,Zetian ZHANG,Xiqun CHEN,Dianhai WANG. Usage prediction of shared bike based on multi-channel graph aggregation attention mechanism. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1986-1995.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.09.022     OR     https://www.zjujournals.com/eng/Y2025/V59/I9/1986


基于多通道图聚合注意力机制的共享单车借还量预测

针对共享单车短期借还量预测中存在的空间范围小、模型时空信息捕捉能力不足及准确性有限等问题,提出基于多通道图聚合注意力机制的预测方法. 根据共享单车在不同区域的流量,采用基于流量调整的虚拟站点划分方法,将城市划分为多个共享单车虚拟站点,并以站点间的借还量矩阵构建动态邻接矩阵,形成共享单车图网络结构. 通过多通道图聚合模块捕捉不同时间段的站点空间信息,并结合多头自注意力模块捕捉时间相关性. 引入交叉注意力机制模块,结合外生变量,获取不同变量之间的潜在联系. 在深圳市和纽约市进行实验,结果表明,与其他深度学习方法相比,该模型在不同时间段和地区均表现出显著优势,保持了稳定且较低的预测误差,证明了动态邻接矩阵以及融合外部特征的交叉注意力机制模块能够有效提高共享单车借还量的预测准确率.


关键词: 共享单车,  多源数据,  深度学习,  虚拟站点划分,  动态邻接矩阵,  交叉注意力 
Fig.1 Virtual shared bike stations of Shenzhen
Fig.2 Multi-channel graph aggregation attention model
Fig.3 Graph aggregation module with dynamic neighborhood matrices
Fig.4 Attention mechanism module
模型深圳纽约
MAERMSEWMAPEMAERMSEWMAPE
ARIMA10.59517.7280.2011.8623.5050.416
Time-GCN5.24110.1020.1001.6022.9740.358
LSTM5.51210.3470.1051.5172.8060.339
CNN-bi-LSTM4.8639.2490.0921.2162.2140.271
GCN-LSTM-FCN3.1005.8410.0591.1752.2090.262
GCN-Transformer2.0113.3050.0381.0231.9860.228
GraphAgg-iTransformer1.6852.6910.0320.9731.8260.217
ST-AGCN1.7152.8920.0330.9751.8100.218
MCGA1.519*2.578*0.029*0.969*1.799*0.216*
Tab.1 Errors of Shenzhen and New York bike-sharing datasets under different prediction models
头/层MAERMSE
8/81.519*2.578
4/81.5392.601
16/81.5342.593
8/61.5292.594
8/101.5222.570*
Tab.2 Errors of MCGA with different hyperparameters
模型MAERMSEWMAPE
全部1.519*2.578*0.029*
去除时间信息1.8432.9460.037
去除天气信息1.7122.7000.033
去除POI信息1.7032.6220.032
Tab.3 Error of MCGA with different external information
Fig.5 MAE chart in different stations
Fig.6 WMAPE chart in different stations
Fig.7 MAE in different time
Fig.8 WMAPE in different time
Fig.9 Comparison between predicted and true value of station with high usage
Fig.10 Comparison between predicted and true value of station with middle usage
Fig.11 Comparison between predicted and true value of station with low usage
[1]   YU L, FENG T, LI T, et al Demand prediction and optimal allocation of shared bikes around urban rail transit stations[J]. Urban Rail Transit, 2023, 9 (1): 57- 71
doi: 10.1007/s40864-022-00183-w
[2]   TANG W, YANG C, WANG H, et al Spatiotemporal demand prediction for bike sharing based on WT-ConvLSTM[J]. Advances in Civil Engineering, 2024, 2024 (1): 2551687
doi: 10.1155/adce/2551687
[3]   XU C, JI J, LIU P The station-free sharing bike demand forecasting with a deep learning approach and large-scale datasets[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 47- 60
doi: 10.1016/j.trc.2018.07.013
[4]   YANG Y, SHAO X, ZHU Y, et al Short-term forecasting of dockless bike-sharing demand with the built environment and weather[J]. Journal of Advanced Transportation, 2023, 2023 (1): 7407748
[5]   FENG J, LIU H An adaptive spatial-temporal method capturing for short-term bike-sharing prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25 (11): 16761- 16774
doi: 10.1109/TITS.2024.3406682
[6]   HE S, SHIN K G. Towards fine-grained flow forecasting: a graph attention approach for bike sharing systems [C]// Proceedings of the Proceedings of The Web Conference 2020. [s.l.]: ACM, 2020: 88–98.
[7]   GALLOP C, TSE C, ZHAO J A seasonal autoregressive model of Vancouver bicycle traffic using weather variables[J]. I-manager’s Journal on Civil Engineering, 2011, 1 (4): 1694
[8]   KALTENBRUNNER A, MEZA R, GRIVOLLA J, et al Urban cycles and mobility patterns: exploring and predicting trends in a bicycle-based public transport system[J]. Pervasive and Mobile Computing, 2010, 6 (4): 455- 466
doi: 10.1016/j.pmcj.2010.07.002
[9]   YOON J W, PINELLI F, CALABRESE F. Cityride: a predictive bike sharing journey advisor [C]// Proceedings of the IEEE 13th International Conference on Mobile Data Management. Bengaluru: IEEE, 2012: 306–311.
[10]   ASHQAR H I, ELHENAWY M, ALMANNAA M H, et al. Modeling bike availability in a bike-sharing system using machine learning [C]// Proceedings of the 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems. Naples: IEEE, 2017: 374–378.
[11]   SATHISHKUMAR V E, PARK J, CHO Y Using data mining techniques for bike sharing demand prediction in metropolitan city[J]. Computer Communications, 2020, 153: 353- 366
doi: 10.1016/j.comcom.2020.02.007
[12]   JIA R, CHAMOUN R, WALLENBRING A, et al A spatio-temporal deep learning model for short-term bike-sharing demand prediction[J]. Electronic Research Archive, 2023, 31 (2): 1031- 1047
doi: 10.3934/era.2023051
[13]   LIN L, HE Z, PEETA S Predicting station-level hourly demand in a large-scale bike-sharing network: a graph convolutional neural network approach[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 258- 276
doi: 10.1016/j.trc.2018.10.011
[14]   DU L, WANG Y, SONG G, et al. Dynamic network embedding: an extended approach for skip-gram based network embedding [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm: International Joint Conferences on Artificial Intelligence Organization, 2018: 2086–2092.
[15]   PAREJA A, DOMENICONI G, CHEN J, et al. EvolveGCN: evolving graph convolutional networks for dynamic graphs [C]// 34th AAAI Conference on Artificial Intelligence. New York: Elsevier, 2020: 5363–5370.
[16]   WEN Z, FANG Y. TREND: temporal event and node dynamics for graph representation learning [C]// Proceedings of the ACM Web Conference 2022. [s.l.]: ACM, 2022: 1159–1169.
[17]   YOU J, DU T, LESKOVEC J. ROLAND: graph learning framework for dynamic graphs [C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Washington DC: ACM, 2022: 2358–2366.
[18]   PAN Y, ZHENG R C, ZHANG J, et al Predicting bike sharing demand using recurrent neural networks[J]. Procedia Computer Science, 2019, 147: 562- 566
doi: 10.1016/j.procs.2019.01.217
[19]   MEHDIZADEH DASTJERDI A, MORENCY C Bike-sharing demand prediction at community level under COVID-19 using deep learning[J]. Sensors, 2022, 22 (3): 1060
doi: 10.3390/s22031060
[20]   VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All you Need [C]// 31st Conference on Neural Information Processing Systems. Long Beach: 2017 : 6000–6010.
[21]   LIU Z, GOKON H, SEKIMOTO Y Long-term demand prediction for public bicycle sharing system: a spatio-temporal attentional graph convolution networks approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25 (12): 21515- 21527
doi: 10.1109/TITS.2024.3469169
[22]   LI X, ZHANG G, CUI H, et al MCANet: a joint semantic segmentation framework of optical and SAR images for land use classification[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 106: 102638
doi: 10.1016/j.jag.2021.102638
[23]   KHAN M, GUEAIEB W, EL SADDIK A, et al MSER: multimodal speech emotion recognition using cross-attention with deep fusion[J]. Expert Systems with Applications, 2024, 245: 122946
doi: 10.1016/j.eswa.2023.122946
[24]   GU J, ZHOU Q, YANG J, et al Exploiting interpretable patterns for flow prediction in dockless bike sharing systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (2): 640- 652
doi: 10.1109/TKDE.2020.2988008
[25]   HUA M, CHEN J, CHEN X, et al Forecasting usage and bike distribution of dockless bike-sharing using journey data[J]. IET Intelligent Transport Systems, 2020, 14 (12): 1647- 1656
doi: 10.1049/iet-its.2020.0305
[26]   AI Y, LI Z, GAN M, et al Retraction note: a deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system[J]. Neural Computing and Applications, 2024, 36 (25): 15927
doi: 10.1007/s00521-024-10079-4
[27]   LIU Z, SHEN Y, ZHU Y. Inferring dockless shared bike distribution in new cities [C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. Marina Del Rey: ACM, 2018: 378–386.
[28]   ZHANG J, ZHENG Y, QI D, et al. DNN-based prediction model for spatio-temporal data [C]// Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Burlingame: ACM, 2016: 1–4.
[1] Jizhong DUAN,Haiyuan LI. Multi-scale parallel magnetic resonance imaging reconstruction based on variational model and Transformer[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1826-1837.
[2] Hong ZHANG,Xuecheng ZHANG,Guoqiang WANG,Panlong GU,Nan JIANG. Real-time positioning and control of soft robot based on three-dimensional vision[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1574-1582.
[3] Shengju WANG,Zan ZHANG. Missing value imputation algorithm based on accelerated diffusion model[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1471-1480.
[4] Dongping ZHANG,Dawei WANG,Shuji HE,Siliang TANG,Zhiyong LIU,Zhongqiu LIU. Remaining useful life prediction of aircraft engines based on cross-dimensional feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1504-1513.
[5] Huizhi XU,Xiuqing WANG. Perception of distance and speed of front vehicle based on vehicle image features[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1219-1232.
[6] Yongqing CAI,Cheng HAN,Wei QUAN,Wudi CHEN. Visual induced motion sickness estimation model based on attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1110-1118.
[7] Lihong WANG,Xinqian LIU,Jing LI,Zhiquan FENG. Network intrusion detection method based on federated learning and spatiotemporal feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1201-1210.
[8] Zan CHEN,Ran LI,Yuanjing FENG,Yongqiang LI. Video snapshot compressive imaging reconstruction based on temporal super-resolution[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 956-963.
[9] Qiaohong CHEN,Menghao GUO,Xian FANG,Qi SUN. Image captioning based on cross-modal cascaded diffusion model[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 787-794.
[10] Zhengyu GU,Feifei LAI,Chen GENG,Ximing WANG,Yakang DAI. Knowledge-guided infarct segmentation of ischemic stroke[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 814-820.
[11] Li MA,Yongshun WANG,Yao HU,Lei FAN. Pre-trained long-short spatiotemporal interleaved Transformer for traffic flow prediction applications[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 669-678.
[12] Kaibo YANG,Mingen ZHONG,Jiawei TAN,Zhiying DENG,Mengli ZHOU,Ziji XIAO. Small-scale sparse smoke detection in multiple fire scenarios based on semi-supervised learning[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 546-556.
[13] Liming LIANG,Pengwei LONG,Jiaxin JIN,Renjie LI,Lu ZENG. Steel surface defect detection algorithm based on improved YOLOv8s[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 512-522.
[14] Minghui YAO,Yueyan WANG,Qiliang WU,Yan NIU,Cong WANG. Siamese networks algorithm based on small human motion behavior recognition[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 504-511.
[15] Zhichao CHEN,Jie YANG,Fan LI,Zhicheng FENG. Review on deep learning-based key algorithm for train running environment perception[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 1-17.