|
|
Pre-trained long-short spatiotemporal interleaved Transformer for traffic flow prediction applications |
Li MA1,2( ),Yongshun WANG1,*( ),Yao HU1,Lei FAN3 |
1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 2. School of Electronic and Electrical Engineering, Lanzhou Petrochemical University of Vocational Technology, Lanzhou 730060, China 3. School ofTelecommunication Engineering, Lanzhou Bowen College of Science and Technology, Lanzhou 730101, China |
|
|
Abstract To mitigate and eliminate the common spatiotemporal illusions in short-term traffic flow prediction, a novel pre-training long-short spatiotemporal interleaved Transformer model was proposed, based on the Transformer network and a self-supervised pre-training to fully supervised training framework. Long-term spatiotemporal heterogeneity was acquired by the self-supervised pre-training, and a spatiotemporal interleaving module was designed to interact and obtain the long-term spatiotemporal heterogeneous interactivity. A short spatiotemporal recurrent Transformer was designed to compress and extract the short-term spatiotemporal sequences onto a spatial slice, which represented the unique spatiotemporal features of the entire short-term sequence. Guided by the long-term spatiotemporal interleaved heterogeneous interactivity, similar features were matched on the future timeline to reconstruct the future short-term spatiotemporal sequence. Different traffic flow prediction models were compared in terms of accuracy and multi-step predictions in four traffic flow benchmark datasets and two traffic speed datasets. Experimental results show that the proposed model improves the accuracy of traffic data prediction compared to current state-of-the-art models.
|
Received: 23 July 2024
Published: 25 April 2025
|
|
Fund: 国家自然科学基金资助项目(6136606);甘肃省教育厅高校教师创新基金资助项目(2023B-294). |
Corresponding Authors:
Yongshun WANG
E-mail: marylovemali@126.com;wangysh@mail.lzjtu.cn
|
预训练长短时空交错Transformer在交通流预测中的应用
为了削弱和消除短期交通流预测普遍存在的时空幻影现象,基于Transformer网络和自监督预训练-全监督训练框架,提出新型预训练长短时空交错Transformer模型. 采用自监督预训练的方式获得长期时空异质性,设计时空交错模块进行交互获得长期时空异质交互性. 设计短时空循环Transformer,将短期时空序列循环压缩提取至能够表现整个短期时空序列独特时空特征的空间片上. 在长期时空交错的时空异质交互性指导下,将未来时间与近似特征匹配,重建未来短期时空序列. 比较不同交通流预测模型在4个交通流标准数据集和2个交通速度数据集上的预测精度和多步长. 实验结果表明,相比当前先进模型,所提模型提升了交通数据预测的精确性.
关键词:
智能交通,
交通流预测,
Transformer,
深度学习,
自监督
|
|
[1] |
TEDJOPURNOMO D A, BAO Z, ZHENG B, et al A survey on modern deep neural network for traffic prediction: trends, methods and challenges[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (4): 1544- 1561
|
|
|
[2] |
KUMAR S V, VANAJAKSHI L Short-term traffic flow prediction using seasonal ARIMA model with limited input data[J]. European Transport Research Review, 2015, 7 (3): 21
doi: 10.1007/s12544-015-0170-8
|
|
|
[3] |
CASTRO-NETO M, JEONG Y S, JEONG M K, et al Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J]. Expert Systems with Applications, 2009, 36 (3): 6164- 6173
doi: 10.1016/j.eswa.2008.07.069
|
|
|
[4] |
ZHANG J, ZHENG Y, QI D Deep spatio-temporal residual networks for citywide crowd flows prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31 (1): 1655- 1661
|
|
|
[5] |
YAO H, TANG X, WEI H, et al Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 5668- 5675
doi: 10.1609/aaai.v33i01.33015668
|
|
|
[6] |
SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network [C]// Proceedings of the 29th International Conference on Neural Information Processing Systems - Volume 1 . Montreal: ACM, 2015: 802–810.
|
|
|
[7] |
YAO H, WU F, KE J, et al Deep multi-view spatial-temporal network for taxi demand prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32 (1): 2588- 2595
|
|
|
[8] |
LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting [EB/OL]. (2018–02–22)[2024–07–23]. https://arxiv.org/pdf/1707.01926.
|
|
|
[9] |
LIN H, BAI R, JIA W, et al. Preserving dynamic attention for long-term spatial-temporal prediction [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . [S. l.]: ACM, 2020: 36–46.
|
|
|
[10] |
BAI L, YAO L, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems . Vancouver: ACM, 2020: 17804–17815.
|
|
|
[11] |
YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting [C]// Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence . Stockholm: IJCAI, 2018: 3634–3640.
|
|
|
[12] |
WU Z, PAN S, LONG G, et al. Graph WaveNet for deep spatial-temporal graph modeling [C]// Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence . Macao: IJCAI, 2019: 1907−1913.
|
|
|
[13] |
CHOI J, CHOI H, HWANG J, et al Graph neural controlled differential equations for traffic forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36 (6): 6367- 6374
doi: 10.1609/aaai.v36i6.20587
|
|
|
[14] |
黄靖, 钟书远, 文元桥, 等 用于交通流预测的自适应图生成跳跃网络[J]. 浙江大学学报: 工学版, 2021, 55 (10): 1825- 1833 HUANG Jing, ZHONG Shuyuan, WEN Yuanqiao, et al Adaptive graph generation jump network for traffic flow prediction[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (10): 1825- 1833
|
|
|
[15] |
贺文武, 裴博彧, 李雅婷, 等 基于双向自适应门控图卷积网络的交通流预测[J]. 交通运输系统工程与信息, 2023, 23 (1): 187- 197 HE Wenwu, PEI Boyu, LI Yating, et al Traffic flow forecasting based on bi-directional adaptive gating graph convolutional networks[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23 (1): 187- 197
|
|
|
[16] |
闫旭, 范晓亮, 郑传潘, 等 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报: 工学版, 2020, 54 (6): 1147- 1155 YAN Xu, FAN Xiaoliang, ZHENG Chuanpan, et al Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (6): 1147- 1155
|
|
|
[17] |
WANG B, LONG Z, SHENG J, et al Spatial–temporal similarity fusion graph adversarial convolutional networks for traffic flow forecasting[J]. Journal of the Franklin Institute, 2024, 361 (17): 107299
doi: 10.1016/j.jfranklin.2024.107299
|
|
|
[18] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [EB/OL]. (2023–08–02)[2024–07–23]. https://arxiv.org/pdf/1706.03762.
|
|
|
[19] |
JIANG J, HAN C, ZHAO W X, et al PDFormer: propagation delay-aware dynamic long-range transformer for traffic flow prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37 (4): 4365- 4373
doi: 10.1609/aaai.v37i4.25556
|
|
|
[20] |
LIU H, DONG Z, JIANG R, et al. Spatio-temporal adaptive embedding makes vanilla transformer SOTA for traffic forecasting [C]// Proceedings of the 32nd ACM International Conference on Information and Knowledge Management . Birmingham: ACM, 2023: 4125–4129.
|
|
|
[21] |
GAO H, JIANG R, DONG Z, et al. Spatial-temporal-decoupled masked pre-training for spatiotemporal forecasting [EB/OL]. (2024–04–28)[2024–07–23]. https://arxiv.org/pdf/2312.00516.
|
|
|
[22] |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies . Minneapolis: ACL, 2019: 4171–4186.
|
|
|
[23] |
BAO H, DONG L, PIAO S, et al. BEiT: BERT pre-training of image transformers [EB/OL]. (2022–09–03)[2024–07–23]. https://arxiv.org/pdf/2106.08254.
|
|
|
[24] |
NIE Y, NGUYEN N H, SINTHONG P, et al. A time series is worth 64 words: long-term forecasting with transformers [EB/OL]. (2023–03–05)[2024–07–23]. https://arxiv.org/pdf/2211.14730.
|
|
|
[25] |
WANG Z, LIU J C Translating math formula images to LaTeX sequences using deep neural networks with sequence-level training[J]. International Journal on Document Analysis and Recognition, 2021, 24 (1/2): 63- 75
|
|
|
[26] |
LI M, ZHU Z Spatial-temporal fusion graph neural networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (5): 4189- 4196
doi: 10.1609/aaai.v35i5.16542
|
|
|
[27] |
GUO S, LIN Y, FENG N, et al Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 922- 929
doi: 10.1609/aaai.v33i01.3301922
|
|
|
[28] |
LAN S, MA Y, HUANG W, et al. DSTAGNN: dynamic spatial-temporal aware graph neural network for traffic flow forecasting [C]// Proceeding of the 39th International Conference on Machine Learning . [S. l.]: PMLR, 2022, 162: 11906–11917.
|
|
|
[29] |
GUO S, LIN Y, WAN H, et al Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (11): 5415- 5428
doi: 10.1109/TKDE.2021.3056502
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|