Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (9): 1892-1901    DOI: 10.3785/j.issn.1008-973X.2024.09.014
    
Elastic metamaterial design based on deep learning and gradient optimization
Li XIAO1,2(),Zhigang CAO1,3,*(),Haoran LU1,Zhijian HUANG1,Yuanqiang CAI1
1. Coastal and Urban Geotechnical Engineering Research Center, Zhejiang University, Hangzhou 310058, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China
3. The Architectural Design and Research Institute of Zhejiang University Co. Ltd, Hangzhou 310028, China
Download: HTML     PDF(3787KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel design method based on deep learning and gradient optimization was proposed to establish a flexible and general framework for fast iterative design of elastic metamaterials and achieve simultaneous optimization of topology structure and material considering material discretization. The design network composed of variational autoencoders and band gap neural network was developed as the framework, and auto-differentiation techniques and gradient optimization algorithms were employed to iteratively tune the design variables with the gradient information. Furthermore, a co-optimization strategy was further proposed to consider the material discretization, so that the structure was optimized while the optimal material was selected from the material depot. Band gap width maximization under constraints and on-demand design were carried out respectively, and the effects of simultaneous optimization and topological configuration were explored. Results showed that the simultaneous optimization provided superior performance compared to separate optimization of materials and topology structures. Additionally, the multilayer configuration can achieve basic units with smaller sizes under the same objectives and material composition. Furthermore, the numerical simulation results of frequency and time domain analyses showed that the designed elastic metamaterials exhibited significant vibration damping performance in the target band gap range.



Key wordselastic metamaterial      band gap      deep learning      gradient optimization      material selection     
Received: 05 August 2023      Published: 30 August 2024
CLC:  TB 34  
  O 327  
Fund:  国家自然科学基金资助项目(51978611);浙江省杰出青年科学基金资助项目(LR21E080004).
Corresponding Authors: Zhigang CAO     E-mail: xiaoli1104@zju.edu.cn;caozhigang2011@zju.edu.cn
Cite this article:

Li XIAO,Zhigang CAO,Haoran LU,Zhijian HUANG,Yuanqiang CAI. Elastic metamaterial design based on deep learning and gradient optimization. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1892-1901.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.09.014     OR     https://www.zjujournals.com/eng/Y2024/V58/I9/1892


基于深度学习和梯度优化的弹性超材料设计

为了建立灵活通用的弹性超材料快速迭代设计框架,并实现考虑材料离散性的拓扑结构和材料参数同步优化,提出基于深度学习和梯度优化的设计方法. 以变分自动编码器和带隙神经网络组成的设计网络作为框架,采用自动微分技术和梯度优化算法,利用梯度信息迭代调整设计变量;提出协同优化策略以考虑材料离散性,使结构优化的同时在材料库中选择最佳材料. 基于所提方法分别进行约束条件下带隙宽度最大化和指定带隙区间设计,并探讨同步优化和拓扑构型的影响. 结果表明,与材料和拓扑结构的单独优化相比,同步优化具有更优越的性能;在相同带隙目标和材料组成下,多层构型可以设计出更小尺寸的元胞. 频域和时域分析的数值模拟结果表明,所设计的超材料结构在目标带隙范围内表现出明显的减振性能.


关键词: 弹性超材料,  带隙,  深度学习,  梯度优化,  材料选择 
Fig.1 Schematic structure of one-dimensional elastic metamaterial
材料E/MPaνρ/(kg·m?3)
C30300000.2002500
C40325000.2002500
#11 橡胶0.810.466837
#71 橡胶1.970.4401315
#94 橡胶0.820.4071032
Tab.1 Several material parameters in material depot
Fig.2 Schematic diagram of variational autoencoders
Fig.3 Training convergence plots of generators
Fig.4 Schematic diagram of band gap neural network
限值Es/MPaνsρs/(kg·m?3)
下限10.201500
上限1000.452200
Tab.2 Range of soil layer parameters
Fig.5 Comparison plot between predicted and actual band gap widths
Fig.6 Forward computation and back propagation process
Fig.7 Flow chart of co-optimization strategy
工况橡胶拓扑结构ωl/Hzωu/Hztd 1)
1)注:上述设计时间结果均为取10次测试后的平均值.
1#11[0 0 1 1 1 1 1 2 2 2]55.2141.33.83 s
2#11[0 0 0 0 1 1 1 1 1 2]52.1144.03.87 s
3#94[1 1 1 2 2 2 0 0 0 0]40.2149.14.38 s
GA+BGNN#94[1 1 1 2 2 2 0 0 0 0]40.2149.1925.3 s
GA+TMM#94[1 1 1 2 2 2 0 0 0 0]40.2149.17.8 h
Tab.3 Design results for maximizing band gap width under constraints and comparison with genetic algorithm design
Fig.8 Convergence diagram and optimal material selection for Case 3
Fig.9 Results of on-demand band gap design under different site conditions
图9土层类型场地土层参数
Es/MPaνsρs/(kg·m?3)
(a)软土10.401600
(b)中硬土500.351800
(c)硬土1000.302000
Tab.4 Site soil parameters (condition variables)
Fig.10 Results of 2D finite element analysis of metamaterial-soil systems
[1]   KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71 (13): 2022- 2025
doi: 10.1103/PhysRevLett.71.2022
[2]   LIU Z, ZHANG X, MAO Y, et al Locally resonant sonic materials[J]. Science, 2000, 289 (5485): 1734- 1736
doi: 10.1126/science.289.5485.1734
[3]   唐豪, 陈晓斌, 唐孟雄, 等 基于复频散曲线特征的周期结构高铁路基减振研究[J]. 岩土工程学报, 2021, 43 (12): 2169- 2179
TANG Hao, CHENG Xiaobing, TANG Mengxiong, et al Vibration reduction of high-speed railway subgrade with periodic structures based on complex dispersion curves[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (12): 2169- 2179
doi: 10.11779/CJGE202112003
[4]   CHENG Z, SHI Z, MO Y Complex dispersion relations and evanescent waves in periodic beams via the extended differential quadrature method[J]. Composite Structures, 2018, 187: 122- 136
doi: 10.1016/j.compstruct.2017.12.037
[5]   DEASI R, GUHA A, SESHU P Modelling and simulation of active and passive seat suspensions for vibration attenuation of vehicle occupants[J]. International Journal of Dynamics and Control, 2021, 9 (4): 1423- 1443
doi: 10.1007/s40435-021-00788-2
[6]   LI X, CHENG S, YANG H, et al Optimization of vibration characteristics and directional propagation of plane waves in branching ligament structures of wind models[J]. Results in Physics, 2023, 47: 106345
doi: 10.1016/j.rinp.2023.106345
[7]   LI X, CHENG S, YANG H, et al Bandgap tuning and in-plane wave propagation of chiral and anti-chiral hybrid metamaterials with assembled six oscillators[J]. Physica A, 2023, 615: 128600
doi: 10.1016/j.physa.2023.128600
[8]   XIAO L, CAO Z, LU H, et al Controllable and scalable gradient-driven optimization design for two-dimensional metamaterials based on deep learning[J]. Composite Structures, 2024, 337: 118072
doi: 10.1016/j.compstruct.2024.118072
[9]   葛倩倩, 于桂兰 有覆层土体中部分埋入式表面波屏障[J]. 工程力学, 2020, 37 (Suppl.1): 249- 253
GE Qianqian, YU Guilan A partially embedded periodic barriers for surface waves in soil with a covered layer[J]. Engineering Mechanics, 2020, 37 (Suppl.1): 249- 253
doi: 10.6052/j.issn.1000-4750.2019.04.S046
[10]   YI G, YOUN B A comprehensive survey on topology optimization of phononic crystals[J]. Structural and Multidisciplinary Optimization, 2016, 54 (5): 1315- 1344
doi: 10.1007/s00158-016-1520-4
[11]   熊远皓, 李凤明, 张传增 周期结构振动带隙特性优化研究进展[J]. 哈尔滨工程大学学报, 2022, 43 (9): 1229- 1240
XIONG Yuanhao, LI Fengming, ZHANG Chuanzeng Research progress on the optimization of vibration band-gap characteristics for periodic structures[J]. Journal of Harbin Engineering University, 2022, 43 (9): 1229- 1240
[12]   WANG X, WAN S, ZHOU P, et al Topology optimization of periodic pile barriers and its application in vibration reduction for plane waves[J]. Soil Dynamics and Earthquake Engineering, 2022, 153: 107119
doi: 10.1016/j.soildyn.2021.107119
[13]   ZHOU P, WAN S, WANG X, et al Topology optimization of the periodic pile barrier with initial stresses arranged in rectangular and equilateral triangular lattices[J]. Structures, 2023, 51: 628- 639
doi: 10.1016/j.istruc.2023.03.013
[14]   LIU Z, ZHU D, RODRIGUES S P, et al Generative model for the inverse design of metasurfaces[J]. Nano Letters, 2018, 18 (10): 6570- 6576
doi: 10.1021/acs.nanolett.8b03171
[15]   贾宇翔, 王甲富, 陈维, 等 基于智能算法的超材料快速优化设计方法研究进展[J]. 雷达学报, 2021, 10 (2): 220- 239
JIA Yuxiang, WANG Jiafu, CHEN Wei, et al Research progress on rapid optimization design methods of metamaterials based on intelligent algorithms[J]. Journal of Radars, 2021, 10 (2): 220- 239
doi: 10.12000/JR21027
[16]   JIN Y, HE L, WEN Z, et al Intelligent on-demand design of phononic metamaterials[J]. Nanophotonics, 2022, 11 (3): 439- 460
doi: 10.1515/nanoph-2021-0639
[17]   LI X, NING S, LIU Z, et al Designing phononic crystal with anticipated band gap through a deep learning based data-driven method[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112737
doi: 10.1016/j.cma.2019.112737
[18]   GURBUZ C, KRONOWETTER F, DIETZ C, et al Generative adversarial networks for the design of acoustic metamaterials[J]. The Journal of the Acoustical Society of America, 2021, 149 (2): 1162- 1174
doi: 10.1121/10.0003501
[19]   曹蕾蕾, 朱旺, 武建华, 等 基于人工神经网络的声子晶体逆向设计[J]. 力学学报, 2021, 53 (7): 1992- 1998
CAO Leilei, ZHU Wang, WU Jianhua, et al Inverse design of phononic crystals by artificial neural networks[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (7): 1992- 1998
doi: 10.6052/0459-1879-21-142
[20]   LIU C, YU G Intelligent design of engineered metabarrier based on deep learning[J]. Composite Structures, 2022, 280: 114911
doi: 10.1016/j.compstruct.2021.114911
[21]   LIU C, YU G Inverse design of locally resonant metabarrier by deep learning with a rule-based topology dataset[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 394: 114925
doi: 10.1016/j.cma.2022.114925
[22]   LIU C, YU G Deep learning-based topology design of periodic barrier for full-mode waves[J]. Construction and Building Materials, 2022, 314: 125579
doi: 10.1016/j.conbuildmat.2021.125579
[23]   LIU D, TAN Y, KHORAM E, et al Training deep neural networks for the inverse design of nanophotonic structures[J]. ACS Photonics, 2018, 5 (4): 1365- 1369
doi: 10.1021/acsphotonics.7b01377
[24]   ABUEIDDA D W, ALMASRI M, AMMOURAH R, et al Prediction and optimization of mechanical properties of composites using convolutional neural networks[J]. Composite Structures, 2019, 227: 111264
doi: 10.1016/j.compstruct.2019.111264
[25]   CUI X, WANG S, HU S A method for optimal design of automotive body assembly using multi-material construction[J]. Materials and Design, 2008, 29 (2): 381- 387
doi: 10.1016/j.matdes.2007.01.024
[26]   XIAO L, CAO Z, LU H, et al Optimal design of one-dimensional elastic metamaterials through deep convolutional neural network and genetic algorithm[J]. Structures, 2023, 57: 105349
doi: 10.1016/j.istruc.2023.105349
[27]   石志飞, 程志宝, 向宏军. 周期结构理论及其在隔震减振中的应用[M]. 北京: 科学出版社, 2017: 270−276.
[28]   CAMLEY R, DJAFARIROUHANI B, DOBRZYNSKI L, et al Transverse elastic-waves in periodically layered infinite, semi-infinite, and slab media[J]. Journal of Vacuum Science and Technology B, Woodbury: Amer Inst Physics, 1983, 1 (2): 371- 375
doi: 10.1116/1.582559
[29]   LUO C, NING S, LIU Z, et al Interactive inverse design of layered phononic crystals based on reinforcement learning[J]. Extreme Mechanics Letters, 2020, 36: 100651
doi: 10.1016/j.eml.2020.100651
[30]   KINGMA D P, WELLING M. Auto-encoding variational bayes [EB/OL]. (2013-12-20) [2023-9-13]. https://doi.org/10.48550/arXiv.1312.6114.
[31]   KINGMA D P, BA J. Adam: a method for stochastic optimization [EB/OL]. (2014-12-22) [2023-9-13]. https://doi.org/10.48550/arXiv.1412.6980.
[32]   BAYDIN A G, PEARLMUTTER B A, RADUL A A. Automatic differentiation in machine learning: a survey [EB/OL]. (2015-2-20) [2023-9-13]. https://doi.org/10.48550/arXiv.1502.05767.
[33]   ABADI M, BARHAM P, CHEN J, et al. TensorFlow: a system for large-scale machine learning [EB/OL]. (2016-5-24) [2023-9-13]. https://doi.org/10.48550/arXiv.1605.08695.
[34]   GUO T, LIU Y, HAN C An overview of stochastic quasi-newton methods for large-scale machine learning[J]. Journal of the Operations Research Society of China, 2023, 10: 245- 275
[1] Fan LI,Jie YANG,Zhicheng FENG,Zhichao CHEN,Yunxiao FU. Pantograph-catenary contact point detection method based on image recognition[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1801-1810.
[2] Shuhan WU,Dan WANG,Yuanfang CHEN,Ziyu JIA,Yueqi ZHANG,Meng XU. Attention-fused filter bank dual-view graph convolution motor imagery EEG classification[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1326-1335.
[3] Linrui LI,Dongsheng WANG,Hongjie FAN. Fact-based similar case retrieval methods based on statutory knowledge[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1357-1365.
[4] Xianwei MA,Chaohui FAN,Weizhi NIE,Dong LI,Yiqun ZHU. Robust fault diagnosis method for failure sensors[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1488-1497.
[5] Juan SONG,Longxi HE,Huiping LONG. Deep learning-based algorithm for multi defect detection in tunnel lining[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1161-1173.
[6] Cuiting WEI,Weijian ZHAO,Bochao SUN,Yunyi LIU. Intelligent rebar inspection based on improved Mask R-CNN and stereo vision[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1009-1019.
[7] Bo ZHONG,Pengfei WANG,Yiqiao WANG,Xiaoling WANG. Survey of deep learning based EEG data analysis technology[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 879-890.
[8] Hai HUAN,Yu SHENG,Chenxi GU. Global guidance multi-feature fusion network based on remote sensing image road extraction[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 696-707.
[9] Xianglong LUO,Yafei WANG,Yanbo WANG,Lixin WANG. Structural deformation prediction of monitoring data based on bi-directional gate board learning system[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 729-736.
[10] Mingjun SONG,Wen YAN,Yizhao DENG,Junran ZHANG,Haiyan TU. Light-weight algorithm for real-time robotic grasp detection[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 599-610.
[11] Qingjie QIAN,Junhe YU,Hongfei ZHAN,Rui WANG,Jian HU. Dimension prediction method of injection molded parts based on multi-feature fusion of DL-BiGRU[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 646-654.
[12] Xinhua YAO,Tao YU,Senwen FENG,Zijian MA,Congcong LUAN,Hongyao SHEN. Recognition method of parts machining features based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 349-359.
[13] Xuefei SUN,Ruifeng ZHANG,Xin GUAN,Qiang LI. Lightweight and efficient human pose estimation with enhanced priori skeleton structure[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 50-60.
[14] Chao-hao ZHENG,Zhi-wei YIN,Gang-feng ZENG,Yue-ping XU,Peng ZHOU,Li LIU. Post-processing of numerical precipitation forecast based on spatial-temporal deep learning model[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1756-1765.
[15] Zhe YANG,Hong-wei GE,Ting LI. Framework of feature fusion and distribution with mixture of experts for parallel recommendation algorithm[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1317-1325.