|
|
Elastic metamaterial design based on deep learning and gradient optimization |
Li XIAO1,2( ),Zhigang CAO1,3,*( ),Haoran LU1,Zhijian HUANG1,Yuanqiang CAI1 |
1. Coastal and Urban Geotechnical Engineering Research Center, Zhejiang University, Hangzhou 310058, China 2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China 3. The Architectural Design and Research Institute of Zhejiang University Co. Ltd, Hangzhou 310028, China |
|
|
Abstract A novel design method based on deep learning and gradient optimization was proposed to establish a flexible and general framework for fast iterative design of elastic metamaterials and achieve simultaneous optimization of topology structure and material considering material discretization. The design network composed of variational autoencoders and band gap neural network was developed as the framework, and auto-differentiation techniques and gradient optimization algorithms were employed to iteratively tune the design variables with the gradient information. Furthermore, a co-optimization strategy was further proposed to consider the material discretization, so that the structure was optimized while the optimal material was selected from the material depot. Band gap width maximization under constraints and on-demand design were carried out respectively, and the effects of simultaneous optimization and topological configuration were explored. Results showed that the simultaneous optimization provided superior performance compared to separate optimization of materials and topology structures. Additionally, the multilayer configuration can achieve basic units with smaller sizes under the same objectives and material composition. Furthermore, the numerical simulation results of frequency and time domain analyses showed that the designed elastic metamaterials exhibited significant vibration damping performance in the target band gap range.
|
Received: 05 August 2023
Published: 30 August 2024
|
|
Fund: 国家自然科学基金资助项目(51978611);浙江省杰出青年科学基金资助项目(LR21E080004). |
Corresponding Authors:
Zhigang CAO
E-mail: xiaoli1104@zju.edu.cn;caozhigang2011@zju.edu.cn
|
基于深度学习和梯度优化的弹性超材料设计
为了建立灵活通用的弹性超材料快速迭代设计框架,并实现考虑材料离散性的拓扑结构和材料参数同步优化,提出基于深度学习和梯度优化的设计方法. 以变分自动编码器和带隙神经网络组成的设计网络作为框架,采用自动微分技术和梯度优化算法,利用梯度信息迭代调整设计变量;提出协同优化策略以考虑材料离散性,使结构优化的同时在材料库中选择最佳材料. 基于所提方法分别进行约束条件下带隙宽度最大化和指定带隙区间设计,并探讨同步优化和拓扑构型的影响. 结果表明,与材料和拓扑结构的单独优化相比,同步优化具有更优越的性能;在相同带隙目标和材料组成下,多层构型可以设计出更小尺寸的元胞. 频域和时域分析的数值模拟结果表明,所设计的超材料结构在目标带隙范围内表现出明显的减振性能.
关键词:
弹性超材料,
带隙,
深度学习,
梯度优化,
材料选择
|
|
[1] |
KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71 (13): 2022- 2025
doi: 10.1103/PhysRevLett.71.2022
|
|
|
[2] |
LIU Z, ZHANG X, MAO Y, et al Locally resonant sonic materials[J]. Science, 2000, 289 (5485): 1734- 1736
doi: 10.1126/science.289.5485.1734
|
|
|
[3] |
唐豪, 陈晓斌, 唐孟雄, 等 基于复频散曲线特征的周期结构高铁路基减振研究[J]. 岩土工程学报, 2021, 43 (12): 2169- 2179 TANG Hao, CHENG Xiaobing, TANG Mengxiong, et al Vibration reduction of high-speed railway subgrade with periodic structures based on complex dispersion curves[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (12): 2169- 2179
doi: 10.11779/CJGE202112003
|
|
|
[4] |
CHENG Z, SHI Z, MO Y Complex dispersion relations and evanescent waves in periodic beams via the extended differential quadrature method[J]. Composite Structures, 2018, 187: 122- 136
doi: 10.1016/j.compstruct.2017.12.037
|
|
|
[5] |
DEASI R, GUHA A, SESHU P Modelling and simulation of active and passive seat suspensions for vibration attenuation of vehicle occupants[J]. International Journal of Dynamics and Control, 2021, 9 (4): 1423- 1443
doi: 10.1007/s40435-021-00788-2
|
|
|
[6] |
LI X, CHENG S, YANG H, et al Optimization of vibration characteristics and directional propagation of plane waves in branching ligament structures of wind models[J]. Results in Physics, 2023, 47: 106345
doi: 10.1016/j.rinp.2023.106345
|
|
|
[7] |
LI X, CHENG S, YANG H, et al Bandgap tuning and in-plane wave propagation of chiral and anti-chiral hybrid metamaterials with assembled six oscillators[J]. Physica A, 2023, 615: 128600
doi: 10.1016/j.physa.2023.128600
|
|
|
[8] |
XIAO L, CAO Z, LU H, et al Controllable and scalable gradient-driven optimization design for two-dimensional metamaterials based on deep learning[J]. Composite Structures, 2024, 337: 118072
doi: 10.1016/j.compstruct.2024.118072
|
|
|
[9] |
葛倩倩, 于桂兰 有覆层土体中部分埋入式表面波屏障[J]. 工程力学, 2020, 37 (Suppl.1): 249- 253 GE Qianqian, YU Guilan A partially embedded periodic barriers for surface waves in soil with a covered layer[J]. Engineering Mechanics, 2020, 37 (Suppl.1): 249- 253
doi: 10.6052/j.issn.1000-4750.2019.04.S046
|
|
|
[10] |
YI G, YOUN B A comprehensive survey on topology optimization of phononic crystals[J]. Structural and Multidisciplinary Optimization, 2016, 54 (5): 1315- 1344
doi: 10.1007/s00158-016-1520-4
|
|
|
[11] |
熊远皓, 李凤明, 张传增 周期结构振动带隙特性优化研究进展[J]. 哈尔滨工程大学学报, 2022, 43 (9): 1229- 1240 XIONG Yuanhao, LI Fengming, ZHANG Chuanzeng Research progress on the optimization of vibration band-gap characteristics for periodic structures[J]. Journal of Harbin Engineering University, 2022, 43 (9): 1229- 1240
|
|
|
[12] |
WANG X, WAN S, ZHOU P, et al Topology optimization of periodic pile barriers and its application in vibration reduction for plane waves[J]. Soil Dynamics and Earthquake Engineering, 2022, 153: 107119
doi: 10.1016/j.soildyn.2021.107119
|
|
|
[13] |
ZHOU P, WAN S, WANG X, et al Topology optimization of the periodic pile barrier with initial stresses arranged in rectangular and equilateral triangular lattices[J]. Structures, 2023, 51: 628- 639
doi: 10.1016/j.istruc.2023.03.013
|
|
|
[14] |
LIU Z, ZHU D, RODRIGUES S P, et al Generative model for the inverse design of metasurfaces[J]. Nano Letters, 2018, 18 (10): 6570- 6576
doi: 10.1021/acs.nanolett.8b03171
|
|
|
[15] |
贾宇翔, 王甲富, 陈维, 等 基于智能算法的超材料快速优化设计方法研究进展[J]. 雷达学报, 2021, 10 (2): 220- 239 JIA Yuxiang, WANG Jiafu, CHEN Wei, et al Research progress on rapid optimization design methods of metamaterials based on intelligent algorithms[J]. Journal of Radars, 2021, 10 (2): 220- 239
doi: 10.12000/JR21027
|
|
|
[16] |
JIN Y, HE L, WEN Z, et al Intelligent on-demand design of phononic metamaterials[J]. Nanophotonics, 2022, 11 (3): 439- 460
doi: 10.1515/nanoph-2021-0639
|
|
|
[17] |
LI X, NING S, LIU Z, et al Designing phononic crystal with anticipated band gap through a deep learning based data-driven method[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112737
doi: 10.1016/j.cma.2019.112737
|
|
|
[18] |
GURBUZ C, KRONOWETTER F, DIETZ C, et al Generative adversarial networks for the design of acoustic metamaterials[J]. The Journal of the Acoustical Society of America, 2021, 149 (2): 1162- 1174
doi: 10.1121/10.0003501
|
|
|
[19] |
曹蕾蕾, 朱旺, 武建华, 等 基于人工神经网络的声子晶体逆向设计[J]. 力学学报, 2021, 53 (7): 1992- 1998 CAO Leilei, ZHU Wang, WU Jianhua, et al Inverse design of phononic crystals by artificial neural networks[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (7): 1992- 1998
doi: 10.6052/0459-1879-21-142
|
|
|
[20] |
LIU C, YU G Intelligent design of engineered metabarrier based on deep learning[J]. Composite Structures, 2022, 280: 114911
doi: 10.1016/j.compstruct.2021.114911
|
|
|
[21] |
LIU C, YU G Inverse design of locally resonant metabarrier by deep learning with a rule-based topology dataset[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 394: 114925
doi: 10.1016/j.cma.2022.114925
|
|
|
[22] |
LIU C, YU G Deep learning-based topology design of periodic barrier for full-mode waves[J]. Construction and Building Materials, 2022, 314: 125579
doi: 10.1016/j.conbuildmat.2021.125579
|
|
|
[23] |
LIU D, TAN Y, KHORAM E, et al Training deep neural networks for the inverse design of nanophotonic structures[J]. ACS Photonics, 2018, 5 (4): 1365- 1369
doi: 10.1021/acsphotonics.7b01377
|
|
|
[24] |
ABUEIDDA D W, ALMASRI M, AMMOURAH R, et al Prediction and optimization of mechanical properties of composites using convolutional neural networks[J]. Composite Structures, 2019, 227: 111264
doi: 10.1016/j.compstruct.2019.111264
|
|
|
[25] |
CUI X, WANG S, HU S A method for optimal design of automotive body assembly using multi-material construction[J]. Materials and Design, 2008, 29 (2): 381- 387
doi: 10.1016/j.matdes.2007.01.024
|
|
|
[26] |
XIAO L, CAO Z, LU H, et al Optimal design of one-dimensional elastic metamaterials through deep convolutional neural network and genetic algorithm[J]. Structures, 2023, 57: 105349
doi: 10.1016/j.istruc.2023.105349
|
|
|
[27] |
石志飞, 程志宝, 向宏军. 周期结构理论及其在隔震减振中的应用[M]. 北京: 科学出版社, 2017: 270−276.
|
|
|
[28] |
CAMLEY R, DJAFARIROUHANI B, DOBRZYNSKI L, et al Transverse elastic-waves in periodically layered infinite, semi-infinite, and slab media[J]. Journal of Vacuum Science and Technology B, Woodbury: Amer Inst Physics, 1983, 1 (2): 371- 375
doi: 10.1116/1.582559
|
|
|
[29] |
LUO C, NING S, LIU Z, et al Interactive inverse design of layered phononic crystals based on reinforcement learning[J]. Extreme Mechanics Letters, 2020, 36: 100651
doi: 10.1016/j.eml.2020.100651
|
|
|
[30] |
KINGMA D P, WELLING M. Auto-encoding variational bayes [EB/OL]. (2013-12-20) [2023-9-13]. https://doi.org/10.48550/arXiv.1312.6114.
|
|
|
[31] |
KINGMA D P, BA J. Adam: a method for stochastic optimization [EB/OL]. (2014-12-22) [2023-9-13]. https://doi.org/10.48550/arXiv.1412.6980.
|
|
|
[32] |
BAYDIN A G, PEARLMUTTER B A, RADUL A A. Automatic differentiation in machine learning: a survey [EB/OL]. (2015-2-20) [2023-9-13]. https://doi.org/10.48550/arXiv.1502.05767.
|
|
|
[33] |
ABADI M, BARHAM P, CHEN J, et al. TensorFlow: a system for large-scale machine learning [EB/OL]. (2016-5-24) [2023-9-13]. https://doi.org/10.48550/arXiv.1605.08695.
|
|
|
[34] |
GUO T, LIU Y, HAN C An overview of stochastic quasi-newton methods for large-scale machine learning[J]. Journal of the Operations Research Society of China, 2023, 10: 245- 275
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|