Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (1): 205-212    DOI: 10.3785/j.issn.1008-973X.2025.01.020
    
Selection of lane-changing distance for vehicles in urban expressway interchange weaving section
Yi ZHAO1(),Chun AN2,Minghao LI1,Jianxiao MA1,Shuo HUAI1
1. College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China
2. School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China
Download: HTML     PDF(1943KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The selection behavior of the lane-changing distance in the lane-changing process was examined by taking the lane-changing behavior in the urban expressway interchange weaving section as an object. Utilizing measured vehicle trajectory data, causal inference theory was applied to identify key factors influencing the choice of lane-changing distance. The factors included the velocity and lane-changing duration of the target vehicle before and after lane-changing, as well as the distance between the current lane and the vehicles in front and behind the target lane. The support vector model and the deep learning model were employed respectively to establish models for lane-changing distance selection behavior to test the validity of the influencing factor analysis. Results show that the screened factors contribute to enhancing the prediction speed of the behavioral choice model and improving the prediction accuracy of the deep learning model. While the support vector model offers faster predictions, it falls behind in prediction accuracy compared to the deep learning model. Conducting characteristic analysis on typical lane-changing behaviors provided a foundational basis for formulating management strategies in the urban expressway interchange weaving section, effectively supplementing existing research on lane-changing behavioral characteristics and offering a nuanced portrayal of the lane-changing process.



Key wordsurban expressway interchange weaving section      lane-changing distance      causal inference      support vector machine      deep learning     
Received: 10 November 2023      Published: 18 January 2025
CLC:  U 491.1+4  
Fund:  国家自然科学基金资助项目(62303228);教育部人文社会科学研究项目(23YJC630253).
Cite this article:

Yi ZHAO,Chun AN,Minghao LI,Jianxiao MA,Shuo HUAI. Selection of lane-changing distance for vehicles in urban expressway interchange weaving section. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 205-212.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.01.020     OR     https://www.zjujournals.com/eng/Y2025/V59/I1/205


城市快速路互通交织区车辆的换道持续距离选择

以城市快速路互通交织区换道行为为对象,研究换道过程中换道持续距离的选择行为. 以实测车行轨迹数据为基础,利用因果推断理论识别影响换道持续距离选择的主要因素:目标车辆换道前后的速度和换道持续时间、当前车道和目标车道前后车的间距. 分别利用支持向量机模型和深度学习模型进行换道持续距离选择行为建模,检验换道持续距离选择行为影响因素分析的有效性. 结果表明,经筛选后的影响因素提高了行为选择模型的预测速度以及深度学习模型的预测精度;支持向量模型虽然预测速度更快,但预测精度不如深度学习模型. 对典型换道行为进行特征分析,为城市快速路互通交织区管理方案的制定奠定了理论基础,是对换道过程行为特征研究的有效补充,精确刻画了换道行为过程.


关键词: 城市快速路互通交织区,  换道持续距离,  因果推断,  支持向量机,  深度学习 
Fig.1 Physical structure of unban expressway interchange waving section
Fig.2 Statistical distribution of distances to front and rear vehicles in target lane
Fig.3 Distribution of lane-changing distance
符号影响因素符号影响因素
ID车辆编号ar当前车道上后车加速度
v车辆速度aft目标车道上前车的加速度
a车辆加速度art目标车道上后车的加速度
v1车辆变道后速度xf当前车道上与前车的距离
a1车辆变道后加速度xr当前车道上与后车的距离
vf当前车道上前车速度xft目标车道上与前车的距离
vr当前车道上后车速度xrt目标车道上与后车的距离
vft目标车道上前车的速度xfr目标车道上前后车间的距离
vrt目标车道上后车的速度t车辆的换道持续时间
af当前车道上的前车加速度xd车辆的换道持续距离
Tab.1 Impact factors of selective behaviour for lane-changing distance
Fig.4 Causal diagram of influencing factors
Fig.5 Box plots of causal effect calculation and refutation
Fig.6 Comparison of predictions from different decision models
Fig.7 Comparison of evaluation indicators of prediction models for experimental groups with different impact factors
Fig.8 Comparison of evaluation indicators of two prediction models for experimental groups with same influence factors
[1]   GAO K, LI X, HU L, et al Instantaneous lane-changing type aware lane change prediction based on LSTM in mixed traffic scenario[J]. Journal of Circuits, Systems and Computers, 2022, 31 (10): 2250180
doi: 10.1142/S0218126622501808
[2]   OUYANG P, WU J, XU C, et al Traffic safety analysis of inter-tunnel weaving section with conflict prediction models[J]. Journal of Transportation Safety and Security, 2020, 14 (4): 1- 25
[3]   吴中, 梁明琰, 杨海飞 基于换道时间分布的交通流随机微分方程[J]. 浙江大学学报: 工学版, 2023, 57 (8): 1629- 1635
WU Zhong, LIANG Mingtan, YANG Haifei Stochastic differential equation of traffic flow model based on distribution of lane-changing duration[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (8): 1629- 1635
[4]   SUN J, ZUO K, JIANG S, et al Modeling and predicting stochastic merging behaviors at freeway on-ramp bottlenecks[J]. Journal of Advanced Transportation, 2018, 2018 (1): 1- 15
[5]   XING L, HE J, LI Y, et al Comparison of different models for evaluating vehicle collision risks at upstream diverging area of toll plaza[J]. Accident Analysis and Prevention, 2020, 135: 105343
doi: 10.1016/j.aap.2019.105343
[6]   ZHAO Y, WANG Z, WU Y, et al Trajectory-based characteristic analysis and decision modeling of the lane-changing process in intertunnel weaving sections[J]. PloS One, 2022, 17 (4): e0266489
doi: 10.1371/journal.pone.0266489
[7]   PARK H, OH C, MOON J, et al Development of a lane change risk index using vehicle trajectory data[J]. Accident Analysis and Prevention, 2018, 110: 1- 8
doi: 10.1016/j.aap.2017.10.015
[8]   SHANGGUAN Q Q, FU T, WANG J, et al A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns[J]. Accident Analysis and Prevention, 2022, 164: 106500
doi: 10.1016/j.aap.2021.106500
[9]   王少杰, 曲大义, 刘浩敏, 等 面向数据驱动的车辆跟驰行为建模[J]. 公路交通科技, 2023, 40 (11): 222- 228
WANG Shaojie, QU Dayi, LIU Haomin, et al Modeling of car-following behavior based on data-driven method[J]. Journal of Highway and Transportation Research and Development, 2023, 40 (11): 222- 228
doi: 10.3969/j.issn.1002-0268.2023.11.026
[10]   ZHANG X, SUN J, QI X, et al Simultaneous modeling of car-following and lane-changing behaviors using deep learning[J]. Transportation Research Part C: Emerging Technologies, 2019, 104: 287- 304
doi: 10.1016/j.trc.2019.05.021
[11]   曲昭伟, 潘昭天, 陈永恒, 等 基于最优速度模型的改进安全距离跟驰模型[J]. 吉林大学学报: 工学版, 2019, 49 (4): 1092- 1099
QU Zhaowei, PAN Zhaotian, CHEN Yongheng, et al Car-following model with improving safety distance based on optimal velocity model[J]. Journal of Jilin University: Engineering and Technology Edition, 2019, 49 (4): 1092- 1099
[12]   李根, 翟伟, 邬岚 基于梯度提升决策树的汇合交互作用研究[J]. 浙江大学学报: 工学版, 2022, 56 (4): 649- 655
LI Gen, ZHAI Wei, WU Lan Study of merging interactions based on gradient boosting decision tree[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (4): 649- 655
[13]   郭俊超, 邵金菊, 袁俊凯, 等 基于虚拟车道线的智能车辆换道轨迹规划方法[J]. 汽车技术, 2023, (11): 19- 26
GUO Junchao, SHAO Jinju, YUAN Junkai, et al Lane change trajectory planning method of intelligent vehicle based on virtual lane[J]. Automobile Technology, 2023, (11): 19- 26
[14]   PENG Y, LIU S, YU D Z An improved car-following model with consideration of multiple preceding and following vehicles in a driver’s view[J]. Physica A: Statistical Mechanics and its Applications, 2020, 538: 122967
doi: 10.1016/j.physa.2019.122967
[15]   ZHOU X, KUANG D, ZHAO W, et al Lane-changing decision method based Nash Q-learning with considering the interaction of surrounding vehicles[J]. IET Intelligent Transport Systems, 2020, 14 (14): 2064- 2072
doi: 10.1049/iet-its.2020.0427
[16]   ALI Y, HAQUE M M, ZHENG Z An extreme value theory approach to estimate crash risk during mandatory lane-changing in a connected environment[J]. Analytic Methods in Accident Research, 2022, 33: 100193
doi: 10.1016/j.amar.2021.100193
[17]   ZHENG O. Developing a traffic safety diagnostics system for unmanned aerial vehicles using deep learning algorithms [D]. Orlando: University of Central Florida, 2019: 1–24.
[18]   马忠贵, 徐晓晗, 刘雪儿 因果推断三种分析框架及其应用综述[J]. 工程科学学报, 2022, 44 (7): 1231- 1243
MA Zhonggui, XU Xiaohan, LIU Xue’er Three analytical frameworks of causal inference and their applications[J]. Chinese Journal of Engineering, 2022, 44 (7): 1231- 1243
doi: 10.3321/j.issn.1001-053X.2022.7.bjkjdxxb202207013
[19]   刘礼, 吴飞, 李廉 因果关系学习的思维取向和概念分析[J]. 中国大学教学, 2021, (10): 35- 42
LIU Li, WU Fei, LI Lian Thinking orientation and conceptual analysis of causal relationship learning[J]. China University Teaching, 2021, (10): 35- 42
doi: 10.3969/j.issn.1005-0450.2021.10.007
[20]   ZHOU Z, ZHAO Y, LI M, et al A causal inference–based speed control framework for discretionary lane-changing processes[J]. Journal of Transportation Engineering, Part A: Systems, 2023, 149 (8): 1
[21]   梁礼明, 陈明理, 邓广宏, 等 分形理论下支持向量机核函数选择[J]. 科学技术与工程, 2019, 19 (13): 131- 138
LIANG Liming, CHEN Mingli, DENG Guanghong, et al Research on selection of kernel function of SVM under fractal theory[J]. Science Technology and Engineering, 2019, 19 (13): 131- 138
doi: 10.3969/j.issn.1671-1815.2019.13.021
[22]   葛泉波, 张建朝, 杨秦敏, 等 带有微分项改进的自适应梯度下降优化算法[J]. 控制理论与应用, 2022, 39 (4): 623- 632
GE Quanbo, ZHANG Jianchao, YANG Qinmin, et al Adaptive gradient descent optimization algorithm with improved differential terms[J]. Control Theory and Applications, 2022, 39 (4): 623- 632
doi: 10.7641/CTA.2021.10061
[1] Zhichao CHEN,Jie YANG,Fan LI,Zhicheng FENG. Review on deep learning-based key algorithm for train running environment perception[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 1-17.
[2] Dengfeng LIU,Shihai CHEN,Wenjing GUO,Zhilei CHAI. Efficient halftone algorithm based on lightweight residual networks[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 62-69.
[3] Fan LI,Jie YANG,Zhicheng FENG,Zhichao CHEN,Yunxiao FU. Pantograph-catenary contact point detection method based on image recognition[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1801-1810.
[4] Li XIAO,Zhigang CAO,Haoran LU,Zhijian HUANG,Yuanqiang CAI. Elastic metamaterial design based on deep learning and gradient optimization[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1892-1901.
[5] Shuhan WU,Dan WANG,Yuanfang CHEN,Ziyu JIA,Yueqi ZHANG,Meng XU. Attention-fused filter bank dual-view graph convolution motor imagery EEG classification[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1326-1335.
[6] Linrui LI,Dongsheng WANG,Hongjie FAN. Fact-based similar case retrieval methods based on statutory knowledge[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1357-1365.
[7] Xianwei MA,Chaohui FAN,Weizhi NIE,Dong LI,Yiqun ZHU. Robust fault diagnosis method for failure sensors[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1488-1497.
[8] Juan SONG,Longxi HE,Huiping LONG. Deep learning-based algorithm for multi defect detection in tunnel lining[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1161-1173.
[9] Bo ZHONG,Pengfei WANG,Yiqiao WANG,Xiaoling WANG. Survey of deep learning based EEG data analysis technology[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 879-890.
[10] Cuiting WEI,Weijian ZHAO,Bochao SUN,Yunyi LIU. Intelligent rebar inspection based on improved Mask R-CNN and stereo vision[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1009-1019.
[11] Xianglong LUO,Yafei WANG,Yanbo WANG,Lixin WANG. Structural deformation prediction of monitoring data based on bi-directional gate board learning system[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 729-736.
[12] Hai HUAN,Yu SHENG,Chenxi GU. Global guidance multi-feature fusion network based on remote sensing image road extraction[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 696-707.
[13] Qingjie QIAN,Junhe YU,Hongfei ZHAN,Rui WANG,Jian HU. Dimension prediction method of injection molded parts based on multi-feature fusion of DL-BiGRU[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 646-654.
[14] Mingjun SONG,Wen YAN,Yizhao DENG,Junran ZHANG,Haiyan TU. Light-weight algorithm for real-time robotic grasp detection[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 599-610.
[15] Xinhua YAO,Tao YU,Senwen FENG,Zijian MA,Congcong LUAN,Hongyao SHEN. Recognition method of parts machining features based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 349-359.