|
|
Experimental analysis of flow properties of fluidized solidified soil based on water film thickness theory |
Qiuhui HU1( ),Qiang LUO1,2,Liang ZHANG1,2,*( ),Weilong LUO1,Libing QIN1 |
1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China 2. Key Laboratory of High-Speed Railway Engineering of the Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China |
|
|
Abstract Fluidized solidification modification of engineering spoils can achieve resource utilisation, solving the backfilling problem of narrow or irregular spaces. The fluidized cement solidified soil was prepared using the red-bed mudstone waste, and the dynamic characteristics of flow spread, bleeding rate and volume fraction of solid with water-to-solid ratio and polycarboxylate superplasticizer (PCE) dosage were tested. Based on the water film thickness (WFT) theory, the relationship between WFT of fluidized solidified soil particles and the packing density and the specific surface area of the solid particles was established; the effect of WFT and PCE dosage on the flow properties of the fluidized solidified soil was analysed. Experimental results show that PCE has the dual effects of dispersing particle flocculation and agglomeration, as well as reducing inter-particle cohesion. Doping at a mass fraction of 0.4% can improve the packing density by 5.33%, and under the same water-to-solid ratio, increase the WFT by 0.123 μm. The flow spread and bleeding rate of fluidized solidified soil with the WFT thickening increase linearly, and the higher the PCE dosage, the greater the magnitude of the enhancement. Based on the regression equation, the critical WFT and flow spread were determined under the condition of no bleeding, and the critical WFT decreased by 36.94% when the mass fraction of blended PCE increased from 0 to 0.4%, but the critical flow spread was improved by 86.96%.
|
Received: 26 May 2024
Published: 25 July 2025
|
|
Fund: 国家自然科学基金资助项目(52078435);四川省自然科学基金资助项目(2023NSFSC0391). |
Corresponding Authors:
Liang ZHANG
E-mail: hqh@my.swjtu.edu.cn;LZhang@swjtu.edu.cn
|
基于水膜厚度理论的流态固化土流动性能试验分析
工程弃土流态固化改性可实现资源化利用,解决狭窄异形空间回填难题. 采用红层泥岩弃方制备流态水泥固化土,测试流动度和泌水率及固体体积分数随水固比和聚羧酸减水剂(PCE)掺量的变化特性;基于水膜厚度(WFT)理论,建立流态固化土颗粒WFT与堆积密度及固体颗粒比表面积的关系,分析WFT及PCE掺量对流态固化土流动性能的影响规律. 试验结果表明:PCE具有分散颗粒絮凝团聚及降低粒间黏聚力的双重效应,当掺配质量分数为0.4%时可提高堆积密度5.33%,相同水固比下水膜厚度增加0.123 μm. 流态固化土流动度、泌水率随WFT增厚线性增加,且PCE掺量越高提升幅度越大. 基于回归方程确定无泌水条件下的临界水膜厚度及流动度,掺配PCE的质量分数从0增至0.4%,临界水膜厚度降低36.94%,临界流动度提升了86.96%.
关键词:
流态水泥固化土,
水膜厚度,
减水剂,
流动度,
泌水率
|
|
[25] |
XIAO Jia, ZHANG Zedi, HAN Kaidong, et al Relationship between particle characteristics and rheological properties of cement-limestone powder pastes[J]. Journal of Building Materials, 2021, 24 (1): 7- 13
doi: 10.3969/j.issn.1007-9629.2021.01.002
|
|
|
[26] |
PERROT A, LECOMPTE T, KHELIFI H, et al Yield stress and bleeding of fresh cement pastes[J]. Cement and Concrete Research, 2012, 42 (7): 937- 944
doi: 10.1016/j.cemconres.2012.03.015
|
|
|
[27] |
ROUSSEL N, LEMAÎTRE A, FLATT R J, et al Steady state flow of cement suspensions: a micromechanical state of the art[J]. Cement and Concrete Research, 2010, 40 (1): 77- 84
doi: 10.1016/j.cemconres.2009.08.026
|
|
|
[28] |
花书贵, 季姣, 单靖舒, 等 大学基础化学教学中分子间作用力与范德华力的概念辨析[J]. 大学化学, 2019, 34 (1): 104- 107 HUA Shugui, JI Jiao, SHAN Jingshu, et al Analysis on the concept of intermolecular interactions and van der waals force in the teaching of university chemistry[J]. University Chemistry, 2019, 34 (1): 104- 107
doi: 10.3866/PKU.DXHX201803015
|
|
|
[29] |
陈宝, 束庆霏, 邓荣升 考虑板状颗粒间相互作用的黏土强度时效性的微观解释[J]. 岩土工程学报, 2021, 43 (2): 271- 280 CHEN Bao, SHU Qingfei, DENG Rongsheng Microscopic interpretation of time-dependent strength of clay considering plate-like particle interactions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (2): 271- 280
doi: 10.11779/CJGE202102007
|
|
|
[30] |
黄英豪, 戴济群, 徐锴 新拌固化淤泥的流动性和黏滞性试验研究[J]. 岩土工程学报, 2022, 44 (2): 235- 244
doi: 10.11779/CJGE202202004
|
|
|
[1] |
PARHI S K, DWIBEDY S, PANDA S, et al A comprehensive study on controlled low strength material[J]. Journal of Building Engineering, 2023, 76: 107086
doi: 10.1016/j.jobe.2023.107086
|
|
|
[2] |
TREJO D, FOLLIARD K J, DU L. Sustainable development using controlled low-strength material [C]// Proceedings of International Workshop on Sustainable Development and Concrete Technology. Beijing: [s. n.], 2004: 231–250.
|
|
|
[3] |
木幡行宏 流動化処理土の力学特性と今後の課題[J]. 土木学会論文集 F, 2006, 62 (4): 618- 627 KOHATA Yukihiro Mechanical properity of liquefied stabilized soil and future issues[J]. Journal of Japan Society of Civil Engineering F, 2006, 62 (4): 618- 627
|
|
|
[30] |
HUANG Yinghao, DAI Jiqun, XU Kai Flowability and viscosity of freshly solidified dredged materials[J]. Chinese Journal of Geotechnical Engineering, 2022, 44 (2): 235- 244
doi: 10.11779/CJGE202202004
|
|
|
[4] |
周永祥, 霍孟浩, 侯莉, 等 低强度流态填筑材料的研究现状及展望[J]. 材料导报, 2024, 38 (15): 130- 138 ZHOU Yongxiang, HUO Menghao, HOU Li, et al Current research and prospect of low strength flowable filling materials[J]. Materials Reports, 2024, 38 (15): 130- 138
doi: 10.11896/cldb.23040087
|
|
|
[5] |
黄新, 宁建国, 郭晔, 等 水泥含量对固化土结构形成的影响研究[J]. 岩土工程学报, 2006, 28 (4): 436- 441 HUANG Xin, NING Jianguo, GUO Ye, et al Effect of cement content on the structural formation of stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28 (4): 436- 441
doi: 10.3321/j.issn:1000-4548.2006.04.004
|
|
|
[6] |
张凤锟, 尹崧宇, 陈浩 木钙减水剂对淤泥固化土流动度影响规律的试验[J]. 水运工程, 2019, (Suppl.2): 13- 17 ZHANG Fengkun, YIN Songyu, CHEN Hao Experiment on influence rule of calcium lignosulfonate plasticizer against fluidity of solidified muddy soil[J]. Port and Waterway Engineering, 2019, (Suppl.2): 13- 17
doi: 10.3969/j.issn.1002-4972.2019.z2.004
|
|
|
[7] |
WAN X, DING J, JIAO N, et al Preparing controlled low strength materials (CLSM) using excavated waste soils with polycarboxylate superplasticizer[J]. Environmental Earth Sciences, 2023, 82 (9): 214
doi: 10.1007/s12665-023-10884-5
|
|
|
[8] |
谭正日, 谭洪波, 吕周岭, 等 不同类型减水剂对渣土基高流态回填材料性能的影响[J]. 硅酸盐通报, 2022, 41 (9): 3227- 3233 TAN Zhengri, TAN Hongbo, LYU Zhouling, et al Effect of plasticizer type on properties of construction spoil based high-fluid backfill materials[J]. Bulletin of the Chinese Ceramic Society, 2022, 41 (9): 3227- 3233
doi: 10.3969/j.issn.1001-1625.2022.9.gsytb202209029
|
|
|
[9] |
ZHANG C, WANG A, TANG M, et al The filling role of pozzolanic material[J]. Cement and Concrete Research, 1996, 26 (6): 943- 947
doi: 10.1016/0008-8846(96)00064-6
|
|
|
[10] |
KWAN A K H, WONG H H C Effects of packing density, excess water and solid surface area on flowability of cement paste[J]. Advances in Cement Research, 2008, 20 (1): 1- 11
doi: 10.1680/adcr.2008.20.1.1
|
|
|
[11] |
WONG H H C, KWAN A K H Rheology of cement paste: role of excess water to solid surface area ratio[J]. Journal of Materials in Civil Engineering, 2008, 20 (2): 189- 197
doi: 10.1061/(ASCE)0899-1561(2008)20:2(189)
|
|
|
[12] |
KWAN A K H, FUNG W W S Roles of water film thickness and SP dosage in rheology and cohesiveness of mortar[J]. Cement and Concrete Composites, 2012, 34 (2): 121- 130
doi: 10.1016/j.cemconcomp.2011.09.016
|
|
|
[13] |
GUO Z, QIU J, JIANG H, et al Flowability of ultrafine-tailings cemented paste backfill incorporating superplasticizer: insight from water film thickness theory[J]. Powder Technology, 2021, 381: 509- 517
doi: 10.1016/j.powtec.2020.12.035
|
|
|
[14] |
WU L, TAO Z, HUANG R, et al Roles of water film thickness and polycarboxylate dosage in the flow spread of phosphorus building gypsum[J]. Journal of Building Engineering, 2023, 74: 106911
doi: 10.1016/j.jobe.2023.106911
|
|
|
[15] |
中华人民共和国交通运输部. 公路土工试验规程: JTG 3430—2020 [S]. 北京: 人民交通出版社, 2020.
|
|
|
[16] |
朱瑜星, 卞怡, 闵凡路, 等 地铁盾构渣土改良为流动化土进行应用试验研究[J]. 土木工程学报, 2020, 53 (Suppl.1): 245- 251 ZHU Yuxing, BIAN Yi, MIN Fanlu, et al Improvement of metro shield muck to controlled low-strength material[J]. China Civil Engineering Journal, 2020, 53 (Suppl.1): 245- 251
|
|
|
[17] |
YAN D Y S, TANG I Y, LO I M C Development of controlled low-strength material derived from beneficial reuse of bottom ash and sediment for green construction[J]. Construction and Building Materials, 2014, 64: 201- 207
doi: 10.1016/j.conbuildmat.2014.04.087
|
|
|
[18] |
JIAN S, CHENG C, WANG J, et al Effect of sulfonated acetone formaldehyde on the properties of high-fluid backfill materials[J]. Construction and Building Materials, 2022, 327: 126795
doi: 10.1016/j.conbuildmat.2022.126795
|
|
|
[19] |
WONG H H C, KWAN A K H Packing density of cementitious materials: part 1: measurement using a wet packing method[J]. Materials and Structures, 2008, 41 (4): 689- 701
doi: 10.1617/s11527-007-9274-5
|
|
|
[20] |
ZHAO M, ZHANG X, ZHANG Y Effect of free water on the flowability of cement paste with chemical or mineral admixtures[J]. Construction and Building Materials, 2016, 111: 571- 579
doi: 10.1016/j.conbuildmat.2016.02.057
|
|
|
[21] |
LIU H, SUN X, DU H, et al Effects and threshold of water film thickness on multi-mineral cement paste[J]. Cement and Concrete Composites, 2020, 112: 103677
doi: 10.1016/j.cemconcomp.2020.103677
|
|
|
[22] |
QI H, MA B, TAN H, et al Polycarboxylate superplasticizer modified by phosphate ester in side chain and its basic properties in gypsum plaster[J]. Construction and Building Materials, 2021, 271: 121566
doi: 10.1016/j.conbuildmat.2020.121566
|
|
|
[23] |
LI Q, FAN Y Rheological evaluation of nano-metakaolin cement pastes based on the water film thickness[J]. Construction and Building Materials, 2022, 324: 126517
doi: 10.1016/j.conbuildmat.2022.126517
|
|
|
[24] |
张昭, 程靖轩, 刘奉银, 等 考虑颗粒粒径和液桥体积的毛细力计算方法[J]. 水利学报, 2021, 52 (4): 442- 460 ZHANG Zhao, CHENG Jingxuan, LIU Fengyin, et al A calculation method for capillary force considering particle size and liquid bridge volume[J]. Journal of Hydraulic Engineering, 2021, 52 (4): 442- 460
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|