|
|
Numerical solution for contaminant transport in cutoff wall considering semipermeable membrane behavior |
Shengyi DENG1( ),Yongwei ZHOU3,Hefu PU1,2,*( ),Yuchao LI4,Ming MIN1 |
1. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518061, China 3. Hubei Dijian Construction Limited Company, Wuhan 430050, China 4. Key Laboratory of Soils and Geoenvironmental Engineering, Ministry ofEducation, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract A numerical model was proposed for contaminant transport in bentonite-based cutoff wall-aquifer system, considering the semipermeable membrane behavior, and the finite difference method was used to obtain the solution. The effectiveness of the numerical solution was validated against the existing analytical solution, semipermeable membrane experiment and COMSOL software simulation. Parametric analyses were conducted using the proposed numerical solution, and the effects of semipermeable membrane behavior, contaminant source mass concentration, thickness of cutoff wall, hydraulic conductivity of cutoff wall, and hydraulic gradient on the transport of lead in the cutoff wall-aquifer system were analyzed. Results show that the semipermeable membrane behavior has a significant impact on contaminant transport, and neglecting this effect can lead to a great underestimation of the breakthrough time and an overestimation of outflow mass flux. Incorporating the semipermeable membrane behavior increases the breakthrough time by 12.2% to 79.6% and decreases the mass flux by 18.4% to 62.3% for the various analyzed conditions. Mass flux reduces by 2 orders of magnitude, and the difference between considering and neglecting semipermeable membrane behavior increases from 31.1% to 97.5% for hydraulic conductivity decreasing from 1×10?8 m/s to 1×10?10 m/s. The proposed numerical solution can consider the effects of advection, molecular diffusion, mechanical dispersion, semipermeable membrane behavior and effective porosity, which can be used in design of bentonite-based cutoff wall and the associated analysis of contaminant transport process.
|
Received: 18 December 2023
Published: 11 February 2025
|
|
Fund: 国家重点研发计划资助项目(2019YFC1806000);国家自然科学基金资助项目(52078235). |
Corresponding Authors:
Hefu PU
E-mail: dengsy@hust.edu.cn;puh@hust.edu.cn
|
阻隔墙中考虑半透膜效应的污染物迁移数值解
建立膨润土系阻隔墙-含水层系统中考虑半透膜效应的污染物迁移数值模型,提出有限差分解法. 通过与现有的解析解、半透膜试验和COMSOL软件数值模拟的比较,验证了该数值解的有效性. 利用提出的数值解开展参数分析,研究半透膜效应、污染物源质量浓度、阻隔墙厚度、阻隔墙渗透系数和水力梯度对铅离子在阻隔墙-含水层系统中迁移规律的影响. 结果表明,半透膜效应对污染物迁移有显著影响,不考虑半透膜效应会较大地低估阻隔墙的击穿时间并高估污染物流出质量. 针对所分析的不同工况,当考虑半透膜效应时,污染物击穿时间提高了12.2%~79.6%,污染物质量通量减少了18.4%~62.3%. 当渗透系数从1×10?8 m/s减小至1×10?10 m/s时,质量通量减少了2个数量级,且是否考虑半透膜效应的差异由31.1%增加至97.5%. 提出的数值解能够考虑对流、分子扩散、机械弥散、半透膜效应、有效孔隙率等作用,可以用于膨润土系阻隔墙的设计和污染物迁移过程分析.
关键词:
阻隔墙,
污染物迁移,
半透膜效应
|
|
[1] |
KODA E, OSINSKI P Bentonite cut-off walls: solution for landfill remedial works[J]. Environmental Geotechnics, 2017, 4 (4): 223- 232
doi: 10.1680/jenge.14.00022
|
|
|
[2] |
陈云敏, 谢海建, 张春华 污染物击穿防污屏障与地下水土污染防控研究进展[J]. 水利水电科技进展, 2016, 36 (1): 1- 10 CHEN Yunmin, XIE Haijian, ZHANG Chunhua Review on penetration of barriers by contaminants and technologies for groundwater and soil contamination control[J]. Advances in Science and Technology of Water Resources, 2016, 36 (1): 1- 10
|
|
|
[3] |
LI Y C, CHEN G N, CHEN Y M, et al Design charts for contaminant transport through slurry trench cutoff walls[J]. Journal of Environmental Engineering, 2017, 143 (9): 06017005
doi: 10.1061/(ASCE)EE.1943-7870.0001253
|
|
|
[4] |
XIE H J, WANG S Y, CHEN Y, et al An analytical model for contaminant transport in cut-off wall and aquifer system[J]. Environmental Geotechnics, 2018, 7 (7): 457- 466
|
|
|
[5] |
YAN H X, XIE H J, WANG S Y, et al A two-dimensional analytical model for organic contaminant transport in cutoff wall and aquifer system[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45 (5): 631- 647
doi: 10.1002/nag.3179
|
|
|
[6] |
HARTE P T, KONIKOW L F, HORNBERGER G Z Simulation of solute transport across low-permeability barrier walls[J]. Journal of Contaminant Hydrology, 2006, 85 (3/4): 247- 270
|
|
|
[7] |
彭春辉, 冯世进, 陈宏信, 等 地下水渗流条件下土工膜复合隔离墙中有机污染物迁移研究[J]. 岩土工程学报, 2021, 43 (11): 2055- 2063 PENG Chunhui, FENG Shijin, CHEN Hongxin, et al Migration of organic contaminants in composite geomembrane cut-off wall considering groundwater seepage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (11): 2055- 2063
|
|
|
[8] |
YEO S S, SHACKELFORD C D, EVANS J C Membrane behavior of model soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (4): 418- 429
doi: 10.1061/(ASCE)1090-0241(2005)131:4(418)
|
|
|
[9] |
NI H, SHEN S Q, FU X L, et al Assessment of membrane and diffusion behavior of soil-bentonite slurry trench wall backfill consisted of sand and xanthan gum amended bentonite[J]. Journal of Cleaner Production, 2022, 365: 132779
doi: 10.1016/j.jclepro.2022.132779
|
|
|
[10] |
SHACKELFORD C D. Membrane behavior of engineered clay barriers for geoenvironmental containment: state of the art [C]// GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering . Oakland: [s. n. ], 2012: 3419-3428.
|
|
|
[11] |
MALUSIS M A, SHACKELFORD C D, MANEVAL J E. Critical review of coupled flux formulations for clay membranes based on nonequilibrium thermodynamics [J]. Journal of Contaminant Hydrology , 2012, 138–139: 40–59.
|
|
|
[12] |
傅贤雷, 杜延军, 沈胜强, 等 PAC改性膨润土/砂竖向阻隔屏障回填料化学渗透膜效应及扩散特性研究[J]. 岩石力学与工程学报, 2020, 39 (Suppl.2): 3669- 3675 FU Xianlei, DU Yanjun, SHEN Shengqiang, et al Chemico-osmotic membrane behavior and diffusive properties of PAC amended bentonite/sand vertical cutoff wall backfills[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (Suppl.2): 3669- 3675
|
|
|
[13] |
李双杰, 伍浩良, 傅贤雷, 等 氧化镁碱激发矿粉-膨润土-土竖向屏障材料阻隔铅污染物的化学渗透膜效应[J]. 岩土工程学报, 2022, 44 (6): 1078- 1086 LI Shuangjie, WU Haoliang, FU Xianlei, et al Experimental study on chemico-osmotic membrane behaviors of reactive MgO-activated slag-bentonite backfill in vertical cutoff walls exposed to Pb-laden groundwater[J]. Chinese Journal of Geotechnical Engineering, 2022, 44 (6): 1078- 1086
|
|
|
[14] |
FU X L, ZHANG R, REDDY K R, et al Membrane behavior and diffusion properties of sand/ shmp-amended bentonite vertical cutoff wall backfill exposed to lead contamination[J]. Engineering Geology, 2021, 284: 106037
doi: 10.1016/j.enggeo.2021.106037
|
|
|
[15] |
MANASSERO M, DOMINIJANNI A Modelling the osmosis effect on solute migration through porous media[J]. Geotechnique, 2003, 53 (5): 481- 492
doi: 10.1680/geot.2003.53.5.481
|
|
|
[16] |
MALUSIS M A, SHACKELFORD C D Explicit and implicit coupling during solute transport through clay membrane barriers[J]. Journal of Contaminant Hydrology, 2004, 72 (1-4): 259- 285
doi: 10.1016/j.jconhyd.2003.12.002
|
|
|
[17] |
TONG S, SAMPLE-LORD K M Coupled solute transport through a polymer-enhanced bentonite[J]. Soils and Foundations, 2022, 62 (6): 101235
doi: 10.1016/j.sandf.2022.101235
|
|
|
[18] |
LI Y C, CLEALL P J Analytical solutions for advective–dispersive solute transport in double-layered finite porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35 (4): 438- 460
doi: 10.1002/nag.903
|
|
|
[19] |
MALUSIS M A, DANIYAROV A S Membrane efficiency and diffusive tortuosity of a dense prehydrated geosynthetic clay liner[J]. Geotextiles and Geomembranes, 2016, 44 (5): 719- 730
doi: 10.1016/j.geotexmem.2016.05.006
|
|
|
[20] |
郑紫荆, 朱云海, 王巧, 等. 有机污染物在含土工膜复合隔离墙和含水层系统的运移半解析模型 [J]. 岩土力学, 2022, 43(2): 453–465. ZHENG Zijing, ZHU Yunhai, WANG Qiao, et al. A semi-analytical model for analyzing the transport of organic pollutants through the geomembrane composite cut-off wall and aquifer system [J], Rock and Soil Mechanics , 2022, 43(2): 453–465.
|
|
|
[21] |
MALUSIS M A, KANG J-B, SHACKELFORD C D Restricted salt diffusion in a geosynthetic clay liner[J]. Environmental Geotechnics, 2015, 2 (2): 68- 77
doi: 10.1680/envgeo.13.00080
|
|
|
[22] |
GELHAR L W, WELTY C, REHFELDT K R A critical review of data on field-scale dispersion in aquifers[J]. Water Resources Research, 1992, 28 (7): 1955- 1974
doi: 10.1029/92WR00607
|
|
|
[23] |
PENG C H, FENG S J, CHEN H X, et al An analytical model for one-dimensional diffusion of degradable contaminant through a composite geomembrane cut-off wall[J]. Journal of Contaminant Hydrology, 2021, 242: 103845
doi: 10.1016/j.jconhyd.2021.103845
|
|
|
[24] |
EGUSA N, NAKAGAWA K, HIRATA T A retardation factor considering solute transfer between mobile and immobile water in porous media[J]. Environmental Modeling and Assessment, 2021, 26 (1): 103- 112
doi: 10.1007/s10666-020-09726-6
|
|
|
[25] |
TANG Q, KATSUMI T, INUI T, et al Membrane behavior of bentonite-amended compacted clay towards Zn(II) and Pb(II)[J]. Membrane Water Treatment, 2015, 6 (5): 393- 409
doi: 10.12989/mwt.2015.6.5.393
|
|
|
[26] |
WANG Y Z, CHEN Y M, XIE H J, et al Lead adsorption and transport in loess-amended soil-bentonite cut-off wall[J]. Engineering Geology, 2016, 215: 69- 80
doi: 10.1016/j.enggeo.2016.11.002
|
|
|
[27] |
DING X H, FENG S J, ZHENG Q T, et al A two-dimensional analytical model for organic contaminants transport in a transition layer-cutoff wall-aquifer system[J]. Computers and Geotechnics, 2020, 597: 126318
|
|
|
[28] |
YAWS C L. Handbook of transport property data: viscosity, thermal conductivity, and diffusion coefficients of liquids and gases [M]. Houston: Gulf Pub. Co, 1995.
|
|
|
[29] |
KANG J B, SHACKELFORD C D Consolidation enhanced membrane behavior of a geosynthetic clay liner[J]. Geotextiles and Geomembranes, 2011, 29 (6): 544- 556
doi: 10.1016/j.geotexmem.2011.07.002
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|