Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (10): 2116-2125    DOI: 10.3785/j.issn.1008-973X.2023.10.020
    
Identification method of cross-scale mesh and application in analysis of cutoff wall
Xiang YU1,2(),Yuan-ping LAI2,Yu-ke WANG2,*(),Yong-qian QU3,Hao-ran ZHENG2
1. Key Laboratory of Engineering Geophysical Prospecting and Detection of Chinese Geophysical Society, Wuhan 430000, China
2. School of Water Conservancy and Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
3. School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
Download: HTML     PDF(3206KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A cross-scale mesh identification method was presented to efficiently create two-dimensional scaled boundary finite element method-finite element method (SBFEM-FEM) cross-scale coupled meshes. The method combined the artificially controllable characteristics of CAD to identify, cut, and organize graphic line segments generating effective nodes and line segments. A reasonable polygonal-scaled boundary element or finite element was generated based on the topological relationship between the nodes and the line segments and the construction of the closed domain. The nodes and element information were assembled. The two-dimensional SBFEM-FEM cross-scale coupled mesh suitable for numerical analysis was produced. The stress and deformation distribution law and peak value of the wall obtained by different mesh generating methods were compared and studied to verify the validity and calculation accuracy of the generated SBFEM-FEM cross-scale coupling mesh based on a dam project. Results showed that the error of the principal stress obtained by the conventional large-scale finite element mesh simulation could exceed 48%, the error of the results obtained based on the proposed cross-scale fine numerical mesh could not exceed 5%, and the number of mesh elements was greatly reduced. The cross-scale mesh identification method can provide strong support for the anti-seepage structures in dam engineering.



Key wordscoupled scaled boundary finite element method-finite element method      generation of cross-scale mesh      refined simulation      cutoff wall of embankment      controllability     
Received: 30 November 2022      Published: 18 October 2023
CLC:  TV 39  
Fund:  中国地球物理学会工程物探检测重点实验室开放研究基金资助项目(CJ2021D05);国家自然科学基金资助项目(52192670, 52109151, 51809034);中国博士后科学基金资助项目(2021M692938);河南省省重点研发与推广专项资助项目(222102320098);云南省重大科技专项计划资助项目(202102AF08002)
Corresponding Authors: Yu-ke WANG     E-mail: xiangyu@zzu.edu.cn;ykewang@163.com
Cite this article:

Xiang YU,Yuan-ping LAI,Yu-ke WANG,Yong-qian QU,Hao-ran ZHENG. Identification method of cross-scale mesh and application in analysis of cutoff wall. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2116-2125.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.10.020     OR     https://www.zjujournals.com/eng/Y2023/V57/I10/2116


跨尺度网格识别方法及在防渗墙分析中的应用

为了高效地生成二维比例边界有限元-有限元(SBFEM-FEM)跨尺度耦合网格,提出跨尺度网格识别方法. 该方法结合CAD人为可控的特点,对图形线段进行识别、裁剪、整理,生成有效节点与线段;根据节点与线段的拓扑关系以及封闭域的构造,生成合理的多边形比例边界单元或有限单元;最后组装节点与单元信息,输出可以用于数值分析的二维SBFEM-FEM跨尺度耦合网格. 为了验证生成SBFEM-FEM跨尺度耦合网格的有效性及计算精度,依托某堤坝工程,对比分析了防渗墙不同网格剖分方法获得的墙体应力变形分布规律及峰值. 结果表明,采用常规大尺度有限元网格模拟获得的主应力误差可以超过48%,基于所提跨尺度精细数值网格获得的结果误差不能超过5%,且其网格单元量大幅度降低. 跨尺度网格识别方法可以为堤坝工程防渗结构提供有力的支持.


关键词: SBFEM-FEM耦合,  跨尺度网格生成,  精细模拟,  堤坝防渗墙,  可控性 
Fig.1 Boundary discrete element in scaled boundary finite element method
Fig.2 Schematic diagram of cross-scale mesh transition method
Fig.3 Schematic diagram of cantilever beam structure
Fig.4 Simplified schematic diagram of cantilever beam structure
Fig.5 Basic mesh diagram of cantilever beam structure
节点编号 1 2 3 4 5 6 7 8
1 1 1
2 1 1 1
3 1 1
4 1 1 1
5 1 1 1
6 1 1
7 1 1 1
8 1 1
Tab.1 Node connection relation matrix A
Fig.6 Relationship diagram of node connection
节点编号 1 2 3 4 5 6 7 8
连接数目 2 2 1 2 1 1 1 0
Tab.2 Number of node connections vector
Fig.7 Identification method and process of unit generation
Fig.8 Cross-scale mesh of cantilever beam structure of final identification
Fig.9 Sketch of material distribution and load steps of embankment
Fig.10 Schematic diagram of force on anti-seepage system
材料 $ {\gamma _{\text{d}}} $/(kg·m?3) $ {\gamma _{\text{f}}} $/(kg·m?3) $ k $ $ {k_{{\text{ur}}}} $ $ \;\beta $ $ {n_{{\text{ur}}}} $
坝体 16.3 982 300 360 0.34 0.34
坝基 16.5 982 320 390 0.30 0.30
材料 $ {R_{\text{f}}} $ $ {k_{\text{b}}} $ $ q $ $ c $/kPa $ \varphi $/(°) $ \Delta \varphi $/(°)
坝体 0.95 200 0.30 22.2 11.3 0
坝基 0.95 215 0.30 21.6 11.8 0
Tab.3 Static parameters of dam body and foundation
材料 $\; \rho$/(kg·m?3) $ E/{\text{MPa}} $ $ \nu $
混凝土防渗墙 2 400 30 000 0.167
基岩 2 400 200 0.350
Tab.4 Static parameters of wall and bedrock
位置 $ K $ $ j $ $ \delta /(^\circ ) $ $ {R_{\text{f}}} $ $ c/{\text{kPa}} $
墙与坝体 757 0.8 11.0 0.89 10.5
墙与坝基 757 0.8 11.0 0.89 10.5
Tab.5 Static parameters of contact surface
Fig.11 Diagram of local elements of wall and soil
Fig.12 Coupling SBFEM-FEM mesh after mesh recognition
M N* N n* H1/m H2/m
1 14 906 14 560 144 0.500 0.125
2 15 381 14 968 552 0.125 0.125
3 48 075 47 634 552 0.125 0.125
Tab.6 Information of node and unit
Fig.13 Element number of dam and wall for three conditions
Fig.14 Distribution of dam displacement after impoundment
Fig.15 Horizontal displacement of wall after impoundment
Fig.16 Maximum and minimum principal stress distribution of wall in upstream after impoundment
Fig.17 Maximum and minimum principal stress distribution of wall in downstream after impoundment
Fig.18 Maximum and minimum principal stress distribution of embankment in downstream after impoundment
模型 上游 $ {\sigma _1} $ 上游 $ {\sigma _3} $ 下游 $ {\sigma _1} $ 下游 $ {\sigma _3} $
F/MPa D/% F/MPa D/% F/MPa D/% F/MPa D/%
1 3.76 19.7 ?0.16 48.80 0.26 29.50 ?3.37 20.88
2 4.63 1.11 ?0.29 4.43 0.36 3.74 ?4.20 1.43
3 4.69 ?3.04 0.38 ?4.26
Tab.7 Principal stress of wall for three conditions
[1]   崔焕平, 崔燕平, 王宗敏 混凝土非线性有限元分析中的网格尺寸效应[J]. 混凝土, 2007, (6): 27- 29
CUI Huan-ping, CUI Yan-ping, WANG Zong-min Mesh size effect in nonlinear finite element analysis of concrete[J]. Concrete, 2007, (6): 27- 29
[2]   邹德高, 刘锁, 陈楷, 等 基于四叉树网格和多边形比例边界有限元方法的岩土工程非线性静动力分析[J]. 岩土力学, 2017, 38 (增2): 33- 40
ZOU De-gao, LIU Suo, CHEN Kai, et al Nonlinear static and dynamic analysis for geotechnical engineer-ing based on quadtree mesh and polygon scaled bou-ndary finite element method[J]. Rock and Soil Mechanics, 2017, 38 (增2): 33- 40
[3]   ZOU D, CHEN K, KONG X, et al An enhanced octree polyhedral scaled boundary finite element meth-od and its applications in structure analysis[J]. Engineering Analysis with Boundary Elements, 2017, 84: 87- 107
doi: 10.1016/j.enganabound.2017.07.007
[4]   ZOU D, TENG X, CHEN K, et al An extended polygon scaled boundary finite element method for the nonlinear dynamic analysis of saturated soil[J]. Engineering Analysis with Boundary Elements, 2018, 91: 150- 161
doi: 10.1016/j.enganabound.2018.03.019
[5]   邹德高, 陈楷, 刘锁, 等 非线性比例边界有限元在面板坝分析中的应用[J]. 土木与环境工程学报(中英文), 2019, 41 (3): 11- 18
ZOU De-gao, CHEN Kai, LIU Suo, et al Application of nonlinear scaled boundary polygon element method in analysis of concrete face rockfill dam[J]. Journal of Civil and Environmental Engineering, 2019, 41 (3): 11- 18
[6]   ZOU D, SUI Y, CHEN K Plastic damage analysis of pile foundation of nuclear power plants under beyond-design basis earthquake excitation[J]. Soil Dynamics and Earthquake Engineering, 2020, 136: 106179
doi: 10.1016/j.soildyn.2020.106179
[7]   GENES M C, KOCAK S Dynamic soilstructure interaction analysis of layered unbounded media via a coupled finite element/boundary element/scaled boun-dary finite element model[J]. International Journal for Numerical Methods in Engineering, 2005, 62 (6): 798- 823
doi: 10.1002/nme.1212
[8]   BEHNKE R, KALISKE M Thermomechanical mod-eling of crack propagation in dynamically loaded ela-stomer specimens using a scaled boundary finite ele-ment approach[J]. Pamm, 2015, 15 (1): 121- 122
doi: 10.1002/pamm.201510051
[9]   李上明 基于比例边界有限元法动态刚度矩阵的坝库耦合分析方法[J]. 工程力学, 2013, 30 (2): 313- 317
LI Shang-ming Transient analysis method for dam-r-eservoir interaction based on dynamic stiffness of S-BFEM[J]. Engineering Mechanics, 2013, 30 (2): 313- 317
[10]   YU X, KONG X, ZOU D, et al Linear elastic and plastic-damage analyses of a concrete cut-off wall co-nstructed in deep overburden[J]. Computers and Geotechnics, 2015, 69: 462- 473
[11]   邹德高, 陈楷, 余翔, 等 基于跨尺度精细方法的面板坝面板损伤演化尺寸效应分析[J]. 土木与环境工程学报(中英文), 2019, 41 (6): 36- 42
ZOU De-gao, CHEN Kai, YU Xiang, et al Size effect analysis of face slab damage evolution for high concrete face dam under earthquakes based on cross- scale fine method[J]. Journal of Civil and Environmental Engineering, 2019, 41 (6): 36- 42
[12]   邹德高, 陈楷, 张仁怡, 等 基于SBFEM的心墙坝基座跨尺度精细应力分析[J]. 人民长江, 2019, 50 (9): 168- 174
ZOU De-gao, CHEN Kai, ZHANG Ren-yi, et al Cross-scale refined stress analysis on base-support of core wall concrete dam based on scaled boundary finite element method[J]. Yangtze River, 2019, 50 (9): 168- 174
[13]   ZOU D, CHEN K, KONG X, et al An approach integrating BIM, octree and FEM-SBFEM for highly efficient modeling and seismic damage analysis of building structures[J]. Engineering Analysis with Boundary Elements, 2019, 104: 332- 346
doi: 10.1016/j.enganabound.2019.03.038
[14]   殷德胜, 尹栓, 周宜红 裂缝分析的比例边界有限元与有限元耦合的虚拟结构面模型[J]. 计算力学学报, 2014, 31 (6): 735- 741
YIN De-sheng, YIN Shuan, ZHOU Yi-hong Coupled SBFEM and FEM for crack analysis based on virtual discontinuous surface method[J]. Chinese Journal of Computational Mechanics, 2014, 31 (6): 735- 741
[15]   YANG Z J, DEEKS A J Fully-automatic modelling of cohesive crack growth using a finite element–scaled boundary finite element coupled method[J]. Engineering Fracture Mechanics, 2007, 74 (16): 2547- 2573
doi: 10.1016/j.engfracmech.2006.12.001
[16]   CHEN K, ZOU D, KONG X, et al Elasto-plastic fine-scale damage failure analysis of metro structures based on coupled SBFEM-FEM[J]. Computers and Geotechnics, 2019, 108: 280- 294
doi: 10.1016/j.compgeo.2018.12.030
[17]   QU Y, ZOU D, KONG X, et al Seismic cracking evolution for antiseepage face slabs in concrete faced rockfill dams based on cohesive zone model in explicit SBFEM-FEM frame[J]. Soil Dynamics and Earthquake Engineering, 2020, 133: 106106
doi: 10.1016/j.soildyn.2020.106106
[18]   YE W, LIU J, FANG H, et al High-performance an-alysis of the interaction between plate and multi-laye-red elastic foundation using SBFEM-FEM[J]. Composite Structures, 2019, 214: 1- 11
[19]   陈楷. 基于比例边界有限元的岩土工程精细化分析方法及应用[D]. 大连: 大连理工大学, 2019: 27-38.
CHEN Kai. Research on technique and application in refined analysis of complicated geotechnical engineering structures based on scaled boundary finite element method [D]. Dalian: Dalian University of technology, 2019: 27-38.
[20]   李华, 刘晓俭, 钟万勰 二维有限元网格图象的识别[J]. 大连理工大学学报, 1993, (4): 373- 379
LI Hua, LIU Xiao-jian, ZHONG Wan-xie Recognition for two-dimension finite element mesh drawings[J]. Journal of Dalian University of Technology, 1993, (4): 373- 379
[21]   赵大洲, 王延红 一种人机结合式二维有限元网格生成法[J]. 华北水利水电学院学报, 1999, 2: 22- 24
ZHAO Da-zhou, WANG Yan-hong An interactive method to generate 2D finite element mesh[J]. Journalof North China Institute of Water Conservancy and Hydroelectric Power, 1999, 2: 22- 24
[22]   徐思浩, 杨建新 判别二维有限元网格图的简便算法[J]. 计算力学学报, 2001, 18 (1): 61- 63
XU Si-hao, YANG Jian-xin A simple algorithm usedto judge the 2D finite element mesh drawing[J]. Chinese Journal of Computational Mechanics, 2001, 18 (1): 61- 63
doi: 10.3969/j.issn.1007-4708.2001.01.011
[23]   田林, 孙志林 AutoCAD下非结构网格自动生成[J]. 水动力学研究与进展(A辑), 2002, 1: 124- 128
TIAN Lin, SUN Zhi-lin Automatic generation of unstructured grid under AutoCAD[J]. Chinese Journal of Hydrodynamics, 2002, 1: 124- 128
[24]   杨星, 蔡开玺. 二维无结构三角形网格自适应生成技术[J]. 人民长江, 2008, 39(19): 101-104.
YANG Xing, CAI Kai-xi, Adaptive generation technology of two-dimensional unstructured triangular mesh[J]. Yangtze River, 2008, 39(19): 101-104.
[25]   冯占荣, 于建群, 王玉杰, 等 一种二维非结构网格改进算法的研究[J]. 燕山大学学报, 2010, 34 (5): 405- 410
FENG Zhan-rong, YU Jian-qun, WANG Yu-jie, et al An improved algorithm for generating two-dimension-al grid[J]. Journal of Yanshan University, 2010, 34 (5): 405- 410
[26]   郭新强. 边界面法四边形网格生成研究与应用[D]. 长沙: 湖南大学, 2011: 10-27.
Guo Xin-qiang. Study on quadrilateral mesh generation for the boundary face method and their impleme-ntation [D]. Changsha: Hunan University, 2011: 10-27.
[27]   徐青, 奚鹏飞 四边形网格自动生成方法改进及工程应用[J]. 中国农村水利水电, 2018, 9: 182- 186
XU Qing, XI Peng-fei The method improvement of quadrilateral mesh automatic generation and engineering application[J]. China Rural Water ang Hydropower, 2018, 9: 182- 186
[28]   籍冉冉, 郑晓朋, 雷娜, 等 用于保特征四边形网格生成的改进Morse算法[J]. 大连理工大学学报, 2020, 60 (6): 647- 653
JI Ran-ran, ZHENG Xiao-peng, LEI Na, et al Improved Morse algorithm for feature-preserving quadrilateral mesh generation[J]. Journal of Dalian University of Technology, 2020, 60 (6): 647- 653
[29]   SONG C, WOLF J P The scaled boundary fniteelement methodalias consistent infinitesimal fnite-element cellmethod for elasto-dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 147 (3-4): 329- 355
doi: 10.1016/S0045-7825(97)00021-2
[30]   WOLF J P, SONG C Dynamic-stiffness matrix in time domain of unbounded medium by infinitesimal finite element cell method[J]. Earthquake Engineering and Structural Dynamics, 1994, 11 (23): 1073- 1086
[31]   DUNCAN J M, CHANG C Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96: 1629- 1653
[32]   LI J, ZHANG J, WANG Y, et al Seismic response of earth dam with innovative polymer antiseepage wall[J]. International Journal of Geomechanics, 2020, 20 (7): 4020079
doi: 10.1061/(ASCE)GM.1943-5622.0001664
[33]   WAYNE C G, M. D J. Finite element analyses of retaining wall behavior [J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(12).
[34]   董景刚. 土与结构接触面力学特性研究[D]. 大连: 大连理工大学, 2011: 55-59.
DONG Jing-gang. Study on mechanical properties of interface between soil and structure[D]. Dalian: Dalian university of technology, 2011: 55-59.
[35]   傅华, 章为民. 坝基混凝土防渗墙与泥皮接触面试验研究 [C]// 第一届中国水利水电岩土力学与工程学术讨论会. 昆明: 中国水利学会, 2006: 498-500.
FU Hua, ZHANG Wei-min. Experimental study on c-ontact surface between concrete cutoff wall and mud cake in dam foundation [C]// 1th National Symposium on Geotechnical Engineering. Kunming: CHES, 2006: 458-500.
[1] OU YANG-qing, LI Zhao-chun,ZHENG Jia-jia, WANG Jiong. Controllability characteristics of magnetorheological damper with multi-stage parallel coil under impact load[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 961-968.
[2] WANG Li,ZHANG Li li,PAN Ke,LI Zheng xi. Traffic signal switching control approach based on state control ability analysis[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1266-1275.
[3] LIU Feng, ZHONG Geng, XU Guo-Zhu, WU Ge-Dun. On-chip debug design based on debug exception model for embedded processor[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(6): 1067-1072.
[4] FU Jin-Bao, ZHANG Hui, SUN You-Xian. Model reduction by minimizing information loss based on cross-Gramian matrix[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 817-821.