Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (3): 547-556    DOI: 10.3785/j.issn.1008-973X.2024.03.012
    
Shear strength characteristics of shallow expansive soil and its fiber improved soil
Junyi DUAN1(),Junjiang WU1,Yu SU1,Zhitao LV1,*(),Yuliang LIN2,Guolin YANG2
1. School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
2. School of Civil Engineering, Central South University, Changsha 410075, China
Download: HTML     PDF(2111KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The shallow expansive soils, closely related to the engineering disaster of expansive soils, are usually subjected to low confining pressures, and their mechanical properties are different from those under high confining pressures. Triaxial shear tests were conducted to compare the shear behavior and nonlinear characteristics of the shear strength of expansive soil under high and low cell pressures. The shear properties and reinforcement mechanism of shallow expansive soil improved by polypropylene fibers were explored. Results showed that the shear strength of shallow expansive soil exhibited significant nonlinearity, which could be represented by a power function. Moreover, it was observed that the nonlinearity of the shear strength of the expansive soil became more prominent with the increase of mass fraction of water and the decrease of cell pressure. Adopting shear strength parameters obtained from triaxial shear tests under high cell pressure led to an overestimation of the cohesion of saturated shallow expansive soil by 225.7% and an underestimation of the internal friction angle by 42.5%. The shear strength of expansive soil was significantly enhanced by adding fibers, and the degree of enhancement was related to the formation of three-dimensional fiber network within the soil. Longer fibers were more effective in reducing the attenuation rate of shear strength, which weakened the strain-softening effect of expansive soil. However, excessively long fibers may bend and twist within the soil, leading to the degradation of the fiber-expansive soil interface during soil deformation.



Key wordslow cell pressure      expansive soil      shear strength      fiber network structure      strain softening      fiber-soil interface interaction     
Received: 17 March 2023      Published: 05 March 2024
CLC:  TU 443  
Fund:  国家自然科学基金资助项目(52208348,52208347);江西省自然科学基金资助项目(20232BAB204083,20224BAB214064,20224BAB214063);中国博士后基金资助项目(2023M731436);西康高铁膨胀土路基建造关键技术研究资助项目(XKGT-07-GGB2022-037).
Corresponding Authors: Zhitao LV     E-mail: junyidjy@163.com;lvzhitao90@126.com
Cite this article:

Junyi DUAN,Junjiang WU,Yu SU,Zhitao LV,Yuliang LIN,Guolin YANG. Shear strength characteristics of shallow expansive soil and its fiber improved soil. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 547-556.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.03.012     OR     https://www.zjujournals.com/eng/Y2024/V58/I3/547


浅层膨胀土及其纤维改良土的剪切强度特性

与膨胀土工程灾害密切相关的浅层膨胀土受到的围压通常较低,其力学特性有别于高围压下的情形. 通过三轴剪切试验比较高、低围压下膨胀土的剪切行为及剪切强度的非线性特征,探讨聚丙烯纤维改良浅层膨胀土的剪切特性及加固机理. 结果表明,浅层膨胀土剪切强度具有明显的非线性,可用幂函数表征. 随着土体中水的质量分数增大和围压减小,膨胀土剪切强度非线性更加明显. 采用高围压下的抗剪强度参数试验结果会导致浅层饱和膨胀土的黏聚力被高估225.7%、内摩擦角被低估42.5%. 掺入纤维后膨胀土的剪切强度明显提高,提升幅度与土体中的三维纤维网状结构的形成度有关. 增大纤维长度可以有效降低剪切强度衰减率,继而消弱膨胀土的应变软化效应;过长的纤维在膨胀土内容易弯曲和扭折,会导致纤维-膨胀土界面作用随着土体变形而逐渐劣化.


关键词: 低围压,  膨胀土,  剪切强度,  纤维网状结构,  应变软化,  纤维-土体界面作用 
d/μmρ/(g·cm?3)f/MPaE/GPaδ/%θ/℃
34.60.914694.220169
Tab.1 Main technical parameters of polypropylene fiber
Fig.1 Physical images in test process
Fig.2 Stress-strain curve of expansive soils with water mass fraction of 17.5%
Fig.3 Stress-strain curve of expansive soils with water mass fraction of 20.7%
Fig.4 Stress-strain curve of expansive soils with water mass fraction of 24.4%
Fig.5 Variation in shear strength attenuation of expansive soils with cell pressure
Fig.6 Strength line Kf of expansive soil under high and low cell pressure sections
Fig.7 Difference between strength envelope under Coulomb failure criterion and true strength envelope
Fig.8 Fitting nonlinear characteristics of shear strength of expansive soil by power function
Fig.9 Stress-strain curve of expansive soil improved by polypropylene fiber with a mass fraction of 0.3%
Fig.10 Tensile phenomenon of fiber on shear plane of failure sample
Fig.11 Peak strength of fiber improved expansive soil and its attenuation characteristics
Fig.12 Strengthening mechanism of fiber improved expansive soil
Fig.13 Effects of fiber length and mass fraction on peak strength of expansive soil
Fig.14 Fiber network structure at fiber length of 3 mm and mass fraction of 0.3%
Fig.15 Damage and destruction of polypropylene fibers
Fig.16 Variation in shear strength parameters of fiber improved expansive soil with fiber mass fraction
[1]   徐永福, 程岩, 肖杰, 等 膨胀土滑坡和工程边坡新型防治技术研究[J]. 岩土工程学报, 2022, 44 (7): 1281- 1294
XU Yongfu, CHENG Yan, XIAO Jie, et al New prevention and control technology for expansive soil slopes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44 (7): 1281- 1294
[2]   DUAN J Y, YANG G L, HU M, et al Heave performance of a ballastless track subgrade of double line high-speed railway filled with micro-expansive andesite under water immersion[J]. Construction and Building Materials, 2020, 252: 119087
doi: 10.1016/j.conbuildmat.2020.119087
[3]   何芳婵, 张俊然 原状膨胀土干湿过程中持水特性及孔隙结构分析[J]. 应用基础与工程科学学报, 2022, 30 (3): 736- 747
HE Fangchan, ZHANG Junran Water retention behavior and pore structure analysis of undisturbed expansive soil during drying and wetting[J]. Journal of Basic Science and Engineering, 2022, 30 (3): 736- 747
[4]   肖杰, 杨和平, 林京松, 等 模拟干湿循环及含低围压条件的膨胀土三轴试验[J]. 中国公路学报, 2019, 32 (1): 21- 28
XIAO Jie, YANG Heping, LIN Jingsong, et al Simulating wet-dry cycles and low confining pressures triaxial test on expansive soil[J]. China Journal of Highway and Transport, 2019, 32 (1): 21- 28
[5]   杨和平, 王兴正, 肖杰 干湿循环效应对南宁外环膨胀土抗剪强度的影响[J]. 岩土工程学报, 2014, 36 (5): 949- 954
YANG Heping, WANG Xingzheng, XIAO Jie Influence of wetting-drying cycles on strength characteristics of Nanning expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (5): 949- 954
doi: 10.11779/CJGE201405020
[6]   张坤勇, 徐娜, 陈恕, 等 膨胀土完全软化强度指标试验研究[J]. 岩土工程学报, 2020, 42 (11): 1988- 1995
ZHANG Kunyong, XU Na, CHEN Shu, et al Experimental study on fully softened shear strength of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (11): 1988- 1995
[7]   HOU T S, XU G L, SHEN Y J, et al Formation mechanism and stability analysis of the Houba expansive soil landslide[J]. Engineering Geology, 2013, 161: 34- 43
doi: 10.1016/j.enggeo.2013.04.010
[8]   杨果林, 陈子昂, 张红日, 等 干湿循环作用下平缓型膨胀土边坡失稳破坏机制研究[J]. 中南大学学报:自然科学版, 2022, 53 (1): 95- 103
YANG Guolin, CHEN Ziang, ZHANG Hongri, et al Collapse mechanism of gentle expansive soil slope in drying and wetting cycles[J]. Journal of Central South University: Science and Technology, 2022, 53 (1): 95- 103
[9]   李彦龙, 汪自力 考虑水分迁移影响的浅层膨胀土抗剪强度冻融劣化特征[J]. 岩石力学与工程学报, 2019, 38 (6): 1261- 1269
LI Yanlong, WANG Zili Shear strength degradation characteristics of expansive soil during freeze-thaw process considering moisture migration[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (6): 1261- 1269
[10]   GU L L, WANG Z, HOSOYA A H, et al Dilatancy and liquefaction behaviour of clean sand at wide range of confining stresses[J]. Journal of Central South University, 2020, 27 (8): 2394- 2407
doi: 10.1007/s11771-020-4457-0
[11]   连继峰, 罗强, 张文生, 等 路堤边坡膨胀土强度非线性应力阈值与浅层稳定性[J]. 哈尔滨工业大学学报, 2021, 53 (3): 142- 151
LIAN Jifeng, LUO Qiang, ZHANG Wensheng, et al Nonlinear stress threshold for expansive soil strength and shallow stability of embankment slope[J]. Journal of Harbin Institute of Technology, 2021, 53 (3): 142- 151
[12]   CHEN G Y, HE P, WANG G, et al Shallow layer destruction law of expansive soil slope under rainfall and the application of geogrid reinforcement[J]. Geofluids, 2021, 2021: 6636894
[13]   HE P, LI S C, XIAO J, et al Shallow sliding failure prediction model of expansive soil slope based on gaussian process theory and its engineering application[J]. KSCE Journal of Civil Engineering, 2018, 22 (5): 1709- 1719
doi: 10.1007/s12205-017-1934-6
[14]   刘斯宏, 沈超敏, 程德虎, 等 土工袋加固膨胀土边坡降雨-日晒循环试验研究[J]. 岩土力学, 2022, 43 (Supp1. 2): 35- 42
LIU Sihong, SHEN Chaomin, CHENG Dehu, et al Model test of expansive soil slope with soilbags during rainfall-insolation cycles[J]. Rock and Soil Mechanics, 2022, 43 (Supp1. 2): 35- 42
[15]   TIWARI N, SATYAM N An experimental study on strength improvement of expansive subgrades by polypropylene fibers and geogrid reinforcement[J]. Scientific Reports, 2022, 12 (1): 6685
doi: 10.1038/s41598-022-10773-0
[16]   庄心善, 周睦凯, 周荣, 等 EPS改良膨胀土孔隙特征与滞回曲线形态[J]. 浙江大学学报:工学版, 2022, 56 (7): 1353- 1403
ZHUANG Xinshan, ZHOU Mukai, ZHOU Rong, et al Pore characteristics and hysteresis curve morphology of expansive soil improved by EPS[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (7): 1353- 1403
[17]   郝建斌, 张焕, 李耕春, 等 粉煤灰-剑麻纤维复合改良膨胀土强度及裂隙发育特性[J]. 铁道科学与工程学报, 2022, 19 (9): 2620- 2628
HAO Jianbin, ZHANG Huan, LI Gengchun, et al Strength and cracking characteristics of expansive soil improved by fly ash and sisal fiber[J]. Journal of Railway Science and Engineering, 2022, 19 (9): 2620- 2628
[18]   WANG Y X, GUO P P, REN W X, et al Laboratory investigation on strength characteristics of expansive soil treated with jute fiber reinforcement[J]. International Journal of Geomechanics, 2017, 17 (11): 4017101
doi: 10.1061/(ASCE)GM.1943-5622.0000998
[19]   WANG Y X, GUO P P, LIN H, et al Numerical analysis of fiber-reinforced soils based on the equivalent additional stress concept[J]. International Journal of Geomechanics, 2019, 19 (11): 4019122
doi: 10.1061/(ASCE)GM.1943-5622.0001504
[20]   WANG Y X, GUO P P, DAI F, et al Behavior and modeling of fiber-reinforced clay under triaxial compression by combining the superposition method with the energy-based homogenization technique[J]. International Journal of Geomechanics, 2018, 18 (12): 4018172
doi: 10.1061/(ASCE)GM.1943-5622.0001313
[21]   王琴琴, 陈开圣 干湿循环下橡胶-红黏土抗剪强度及裂隙的演变规律研究[J]. 广西大学学报:自然科学版, 2022, 47 (2): 340- 348
WANG Qinqin, CHEN Kaisheng Study on shear strength and fracture evolution of rubber-red clay under drying-wetting cycles[J]. Journal of Guangxi University: Natural Science Edition, 2022, 47 (2): 340- 348
[22]   POWRIE W, YANG L A, CLAYTON C R I Stress changes in the ground below ballasted railway track during train passage[J]. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit, 2007, 221 (2): 247- 261
doi: 10.1243/0954409JRRT95
[23]   CHADUVULA U, VISWANADHAM B V S, KODIKARA J Centrifuge model studies on desiccation cracking behaviour of fiber-reinforced expansive clay[J]. Geotextiles and Geomembranes, 2022, 50 (3): 480- 497
doi: 10.1016/j.geotexmem.2022.02.001
[24]   PHANIKUMAR B R, SINGLA R Swell-consolidation characteristics of fibre-reinforced expansive soils[J]. Soils and Foundations, 2016, 56 (1): 138- 143
doi: 10.1016/j.sandf.2016.01.011
[25]   中华人民共和国水利部. 土工试验方法标准: GB/T 50123—2019 [S]. 北京: 中国计划出版社, 2019: 110-111.
[26]   刘先峰, 潘申鑫, 袁胜洋, 等 压实红层泥岩填料强度与刚度软化和衰减特性研究[J]. 铁道科学与工程学报, 2022, 19 (9): 2629- 2636
LIU Xianfeng, PAN Shenxin, YUAN Shengyang, et al Study on stiffness softening and attenuation characteristics of compacted red mudstone[J]. Journal of Railway Science and Engineering, 2022, 19 (9): 2629- 2636
[27]   CHEN G Q, CHEN T, CHEN Y, et al A new method of predicting the prestress variations in anchored cables with excavation unloading destruction[J]. Engineering Geology, 2018, 241: 109- 120
doi: 10.1016/j.enggeo.2018.05.015
[28]   GHAYOOMI M, SUPRUNENKO G, MIRSHEKARI M Cyclic triaxial test to measure strain-dependent shear modulus of unsaturated sand[J]. International Journal of Geomechanics, 2017, 17 (9): 4017043
doi: 10.1061/(ASCE)GM.1943-5622.0000917
[29]   冷伍明, 艾希, 徐方, 等 新型预应力路基水平向附加应力扩散规律研究[J]. 岩土工程学报, 2019, 41 (8): 1445- 1454
LENG Wuming, AI Xi, XU Fang, et al Diffusion laws of horizontal additional stress in a new prestressed subgrade[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (8): 1445- 1454
[30]   ZHANG Q S, LENG W M, XU F, et al Additional stress in soil embankments subjected to a new prestressed reinforcement device[J]. Journal of Civil Engineering and Management, 2019, 25 (7): 700- 714
doi: 10.3846/jcem.2019.10532
[31]   LADE P V The mechanics of surficial failure in soil slopes[J]. Engineering Geology, 2010, 114 (1-2): 57- 64
doi: 10.1016/j.enggeo.2010.04.003
[32]   荣德政, 唐朝生, 曾浩, 等 纤维加筋土坯的蒸发过程及抗拉强度特性[J]. 岩土工程学报, 2021, 43 (4): 670- 678
RONG Dezheng, TANG Chaosheng, ZENG Hao, et al Evaporation process and tensile behavior of fiber-reinforced rammed earth[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (4): 670- 678
[33]   李建, 唐朝生, 王德银, 等 基于单根纤维拉拔试验的波形纤维加筋土界面强度研究[J]. 岩土工程学报, 2014, 34 (9): 1696- 1704
LI Jian, TANG Chaosheng, WANG Deyin, et al Single fiber pullout tests on interfacial shear strength of wave-shape fiber-reinforced soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 34 (9): 1696- 1704
[1] Jun-chao JIN,Lai-hong JING,Feng-wei YANG,Zhi-yu SONG,Peng-yang SHANG. Improvement of multi-step brittle-plastic approach[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1706-1717.
[2] Wei WANG,Shuai-shuai HUANG,Wen-jie YU,Xu-ming CHE,Na LI. Direct shear mechanical behavior of cement stabilized road solid waste modified by fibers and nanomaterials[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1727-1735.
[3] Li-hua LI,Zi-jian LI,Heng-lin XIAO,Shao-ping HUANG,Yi-ming LIU. Engineering characteristics and mechanism of rice husk ash-ground granulated blast slag cured expansive soil[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1736-1745.
[4] Tao GONG,Kai-fu LIU,Xin-yu XIE,Chun-tai XU,Yang LOU,Ling-wei ZHENG. Shear characteristics of interface based on subloading-friction model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1328-1335, 1352.
[5] Xin-shan ZHUANG,Mu-kai ZHOU,Rong ZHOU,Gao-liang TAO. Pore characteristics and hysteresis curve morphology of expansive soil improved by EPS[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1353-1362, 1403.
[6] Hao SUN,Kun-lin TANG,Ai-bing JIN,Mei-chen LIU,Shuai-jun CHEN,Mu-ya LI. Experimental study on influence of single coarse particle on shear properties of ore-rock particle system[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2037-2048.
[7] Jia-qi JIANG,Ri-qing XU,Zhi-jian QIU,Xiao-bo ZHAN,Yue WANG,Guang-mou CHENG. Egg-shaped elasto-plastic constitutive modeling for over-consolidated clay[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1444-1452.
[8] Yang XUE,Yi-ping WU,Fa-sheng MIAO,Lin-wei LI. Back analysis of shear strength parameters of sliding surface by using combination method of random field and Bayes theory[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1118-1127.
[9] Xuan-chen DING,Yu-min CHEN,Xin-lei ZHANG. Experimental study on microbial reinforced calcareous sand using ring shear apparatus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1690-1696.
[10] Xin-shan ZHUANG,Han-wen ZHAO,Jun-xiang WANG,Yong-jie HUANG. Experimental study of dynamic elastic modulus and damping ratio of expansive soil in Hefei[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 759-766.
[11] XU Hui, MIAO Jian-dong, CHEN Ping, ZHAN Liang-tong, LUO Xiao-yong. Measurements of geotechnical properties of municipal solid waste incineration fly ash stabilized by chemical reagents[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 1-10.
[12] WANG Qiang, JIN Ling-zhi, CAO Xia, LV Hai-bo. Experimental study on shear performance of reactive powder concrete beam[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 922-930.
[13] YANG Guo lin, DUAN Jun yi, YANG Xiao, XU Ya bin. Vibration characteristics of subgrade in expansive soil area under simulated rainfall and natural conditions[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2319-2327.
[14] LI Zhi-ning, HAN Tong-chun, DOU Hong-qiang, QIU Zi-yi. Analysis of torque on helical soil nail drilling into strata[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1426-1433.
[15] WANG Guo-qing, CHENG Zhuang, WANG Zhen-yu, CHEN Feng, ZHANG Yi. Shear capacity of composite member of high strength grouted cement paste and steel plate with shear keys[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1282-1287.