Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (7): 1333-1343    DOI: 10.3785/j.issn.1008-973X.2025.07.001
    
Optimization methods of 3D self-supporting truss structure based on muti-axis 3D printing
Jun YE1,2(),Zhibin XIAO2,3,Xiaoyang LIN1,Guan QUAN1,Zhen WANG4,Yueda WANG1,Jiangfei HE6,Yang ZHAO5
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China
3. The Architectural Design & Research Institute of Zhejiang University Limited Company, Hangzhou 310028, China
4. Department of Civil Engineering, Hangzhou City University, Hangzhou 310015, China
5. School of Civil Engineering, Shaoxing University, Shaoxing 312000, China
6. China Energy Engineering Group Zhejiang Electric Power Design Institute Limited Company, Hangzhou 310012, China
Download: HTML     PDF(3537KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A two-step optimization method based on multi-axis 3D printing was proposed, as the three-axis optimization method has limitations in 3D printing angles and material efficiency, leading to material waste. The design domain was divided into several partitions, and the local printing direction of each partition was solved optimally to maximize the printability of the structure. When the printability index was below the set threshold, the printability of the structure was improved by simultaneously optimizing the structural mechanical properties and the local printing directions to plan the printing path. The effectiveness of the proposed method was verified through several arithmetic examples. Results show that compared with the traditional three-axis printing algorithm, the proposed method fully utilizes the flexibility of multi-axis 3D printing, achieving less material volume increase, better design outcomes of the printed structure, and a significant improvement in the printability of the structure.



Key wordsmulti-axis 3D printing      structure optimization      self-supporting structures      printing path planning      printability index     
Received: 15 May 2024      Published: 25 July 2025
CLC:  TU 311.4  
Fund:  国家自然科学基金资助项目(52208215,52078452);浙江省基础公益研究计划资助项目(LGG22E080005,LQ22E080008).
Cite this article:

Jun YE,Zhibin XIAO,Xiaoyang LIN,Guan QUAN,Zhen WANG,Yueda WANG,Jiangfei HE,Yang ZHAO. Optimization methods of 3D self-supporting truss structure based on muti-axis 3D printing. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1333-1343.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.07.001     OR     https://www.zjujournals.com/eng/Y2025/V59/I7/1333


基于多轴3D打印的三维自支撑桁架结构优化方法

三轴优化方法在3D打印角度和材料效率方面存在局限性,造成材料浪费,为此提出基于多轴3D打印的两步优化方法. 将设计域划分成若干分区,优化求解各分区的局部打印方向,使结构尽可能被打印. 当可打印性指标低于设定阈值时,同时优化结构力学性能和局部打印方向来规划打印路径,使结构的可打印性提升. 设置多个算例,验证所提方法的有效性. 结果表明,相比传统的三轴打印算法,所提方法能够充分利用多轴3D打印的灵活性,使材料体积增加更少,打印结构设计结果更优,结构的可打印性得到有效提升.


关键词: 多轴3D打印,  结构优化,  自支撑结构,  打印路径规划,  可打印性指标 
Fig.1 Workflow of layout and geometry optimization
Fig.2 Diagram of member printing direction identification
Fig.3 Diagram of design domain partition
Fig.4 Diagram of local printing direction projection
Fig.5 Suspension violation value of projection surface
Fig.6 Print surface continuity constraints
Fig.7 Projection of printing turning angle
Fig.8 Influence of boundary position variables of partitions in same layer on optimization process
Fig.9 Flow chart of optimization method for self-supporting truss structures based on multi-axis 3D printing
Fig.10 Effect of structure overhang angle on print quality
Fig.11 Collision problem for multi-axis printing
Fig.12 Optimization results of rotating cantilever arithmetic example
Fig.13 Printing slicing path of rotating cantilever
Fig.14 Optimization results of cantilever arithmetic example
Fig.15 Optimization results of two-load truss arithmetic example
Fig.16 Multi-axis printing system
Fig.17 Slicing process for printing models
Fig.18 Photos of model printing process
[1]   PAJONK A, PRIETO A, BLUM U, et al Multi-material additive manufacturing in architecture and construction: a review[J]. Journal of Building Engineering, 2022, 45: 103603
doi: 10.1016/j.jobe.2021.103603
[2]   MADHAVADAS V, SRIVASTAVA D, CHADHA U, et al A review on metal additive manufacturing for intricately shaped aerospace components[J]. CIRP Journal of Manufacturing Science and Technology, 2022, 39: 18- 36
doi: 10.1016/j.cirpj.2022.07.005
[3]   SALMI M Additive manufacturing processes in medical applications[J]. Materials, 2021, 14 (1): 191
doi: 10.3390/ma14010191
[4]   LIU B, SHEN H, ZHOU Z, et al Research on support-free WAAM based on surface/interior separation and surface segmentation[J]. Journal of Materials Processing Technology, 2021, 297: 117240
doi: 10.1016/j.jmatprotec.2021.117240
[5]   JIANG J, NEWMAN S T, ZHONG R Y A review of multiple degrees of freedom for additive manufacturing machines[J]. International Journal of Computer Integrated Manufacturing, 2021, 34 (2): 195- 211
doi: 10.1080/0951192X.2020.1858510
[6]   LI Y, HE D, YUAN S, et al Vector field-based curved layer slicing and path planning for multi-axis printing[J]. Robotics and Computer-Integrated Manufacturing, 2022, 77: 102362
doi: 10.1016/j.rcim.2022.102362
[7]   DAI C, WANG C C L, WU C, et al Support-free volume printing by multi-axis motion[J]. ACM Transactions on Graphics, 2018, 37 (4): 1- 14
[8]   XU K, LI Y, CHEN L, et al Curved layer based process planning for multi-axis volume printing of freeform parts[J]. Computer-Aided Design, 2019, 114: 51- 63
doi: 10.1016/j.cad.2019.05.007
[9]   LI Y M, HE D, WANG X Y, et al. Geodesic distance field-based curved layer volume decomposition for multi-axis support-free printing [EB/OL]. (2020–03–12)[2024–02–20]. https://arxiv.org/pdf/2003.05938.
[10]   BI D, XIE F, TANG K Generation of efficient iso-planar printing path for multi-axis FDM printing[J]. Journal of Manufacturing and Materials Processing, 2021, 5 (2): 59
doi: 10.3390/jmmp5020059
[11]   王铮, 赵东标 FDM五轴3D打印支撑消减算法研究[J]. 机械科学与技术, 2023, 42 (10): 1673- 1677
WANG Zheng, ZHAO Dongbiao Study on elimination-reduction algorithm of support in five-axis 3D printing[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42 (10): 1673- 1677
[12]   MICHELL A G M The limits of economy of material in frame-structures[J]. Philosophical Magazine, 1904, 8 (47): 589- 597
[13]   BENDSØE M P, KIKUCHI N Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71 (2): 197- 224
doi: 10.1016/0045-7825(88)90086-2
[14]   QUERIN O M, YOUNG V, STEVEN G P, et al Computational efficiency and validation of bi-directional evolutionary structural optimisation[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 189 (2): 559- 573
doi: 10.1016/S0045-7825(99)00309-6
[15]   ALLAIRE G, JOUVE F, TOADER A M Structural optimization using sensitivity analysis and a level-set method[J]. Journal of Computational Physics, 2004, 194 (1): 363- 393
doi: 10.1016/j.jcp.2003.09.032
[16]   ZHANG W, YUAN J, ZHANG J, et al A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model[J]. Structural and Multidisciplinary Optimization, 2016, 53 (6): 1243- 1260
doi: 10.1007/s00158-015-1372-3
[17]   ZHANG W, ZHANG J, GUO X Lagrangian description based topology optimization: a revival of shape optimization[J]. Journal of Applied Mechanics, 2016, 83 (4): 041010
doi: 10.1115/1.4032432
[18]   ZHANG W, YANG W, ZHOU J, et al Structural topology optimization through explicit boundary evolution[J]. Journal of Applied Mechanics, 2016, 84 (1): 011011
[19]   ZHANG W, CHEN J, ZHU X, et al Explicit three dimensional topology optimization via moving morphable void (MMV) approach[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 322: 590- 614
doi: 10.1016/j.cma.2017.05.002
[20]   DORN W S Automatic design of optimal structures[J]. Journal de Mecanique, 1964, 3 (6): 25- 52
[21]   GILBERT M, TYAS A Layout optimization of large-scale pin-jointed frames[J]. Engineering Computations, 2003, 20 (8): 1044- 1064
doi: 10.1108/02644400310503017
[22]   HE L, GILBERT M Rationalization of trusses generated via layout optimization[J]. Structural and Multidisciplinary Optimization, 2015, 52 (4): 677- 694
doi: 10.1007/s00158-015-1260-x
[23]   GARAIGORDOBIL A, ANSOLA R, FERNANDEZ DE BUSTOS I On preventing the dripping effect of overhang constraints in topology optimization for additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2021, 64 (6): 4065- 4078
doi: 10.1007/s00158-021-03077-w
[24]   GAYNOR A T, GUEST J K Topology optimization considering overhang constraints: eliminating sacrificial support material in additive manufacturing through design[J]. Structural and Multidisciplinary Optimization, 2016, 54 (5): 1157- 1172
doi: 10.1007/s00158-016-1551-x
[25]   GARAIGORDOBIL A, ANSOLA R, SANTAMARÍA J, et al A new overhang constraint for topology optimization of self-supporting structures in additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2018, 58 (5): 2003- 2017
doi: 10.1007/s00158-018-2010-7
[26]   VAN DE VEN E, MAAS R, AYAS C, et al Continuous front propagation-based overhang control for topology optimization with additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2018, 57 (5): 2075- 2091
doi: 10.1007/s00158-017-1880-4
[27]   VAN DE VEN E, MAAS R, AYAS C, et al Overhang control in topology optimization: a comparison of continuous front propagation-based and discrete layer-by-layer overhang control[J]. Structural and Multidisciplinary Optimization, 2021, 64 (2): 761- 778
doi: 10.1007/s00158-021-02887-2
[28]   LANGELAAR M Topology optimization of 3D self-supporting structures for additive manufacturing[J]. Additive Manufacturing, 2016, 12: 60- 70
doi: 10.1016/j.addma.2016.06.010
[29]   LANGELAAR M An additive manufacturing filter for topology optimization of print-ready designs[J]. Structural and Multidisciplinary Optimization, 2017, 55 (3): 871- 883
doi: 10.1007/s00158-016-1522-2
[30]   HE L, GILBERT M, JOHNSON T, et al Conceptual design of AM components using layout and geometry optimization[J]. Computers and Mathematics with Applications, 2019, 78 (7): 2308- 2324
[31]   林晓阳, 叶俊, 王震, 等. 考虑悬垂约束的3D打印结构优化方法及实验研究[EB/OL]. (2023–09–05)[2024–02–20]. https://link.cnki.net/urlid/11.2595.o3.20230904.1623.006.
[32]   YE J, LIN X, LU H, et al Layout and geometry optimization design for 3D printing of self-supporting structures[J]. Structures, 2024, 59: 105699
doi: 10.1016/j.istruc.2023.105699
[33]   LU H, HE L, GILBERT M, et al Design of optimal truss components for fabrication via multi-axis additive manufacturing[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 418: 116464
doi: 10.1016/j.cma.2023.116464
[34]   MOSEK. MOSEK optimization toolbox for Python (Version 10.1) [EB/OL]. (2023–05–01) [2024–02–20]. https://docs.mosek.com/latest/pythonapi/index.html.
[35]   WÄCHTER A, BIEGLER L T On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming[J]. Mathematical Programming, 2006, 106 (1): 25- 57
doi: 10.1007/s10107-004-0559-y
[36]   HAFTKA R T, GÜRDAL Z. Elements of structural optimization [M]. [S.l.]: Springer Science and Business Media, 2012.
[37]   Robert McNeel and Associates. Rhinoceros 7 [EB/OL]. (2021–09–01)[2024–02–20]. https://www.rhino3d.com.
[38]   SMITH C J, GILBERT M, TODD I, et al Application of layout optimization to the design of additively manufactured metallic components[J]. Structural and Multidisciplinary Optimization, 2016, 54 (5): 1297- 1313
doi: 10.1007/s00158-016-1426-1
[39]   PAN Z, DING D, WU B, et al. Arc welding processes for additive manufacturing: a review [C]// Transactions on Intelligent Welding Manufacturing. [S.l.]: Springer, 2018: 3–24.
[1] Jun-xia JIANG,Hai-peng LIAO. Stiffness modeling and structure optimization of heavy-duty intelligent stacking equipment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1948-1959.
[2] Wen-han CAO,Jun GONG,Hong-gang WANG,Gui GAO,Yuan QI,Dong-ya YANG. Numerical simulation on wear-thermal-stress coupling behavior of cap-seal seal and optimization design[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 258-267.
[3] YING Shen-shun, LIN Lv-gao, JI Shi-ming. Optimization design to machine tool structures using experimental verification of modal parameters[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1880-1887.
[4] NING Yin hang, LIU Chuang, GAN Xing ye. Electromagnetic design and analysis of two stage hybrid excitation synchronous generator[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 519-526.