Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (6): 1241-1252    DOI: 10.3785/j.issn.1008-973X.2025.06.015
    
Analysis of overexcavation and underexcavation caused by shield tunneling in clay and rock composite stratum
Yongjie QI1(),Yicheng JIANG1,Jian ZHOU1,*(),Weikang ZHANG2,Di ZHANG3,Gang WEI4
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Scientific Research Institute of Transport, Hangzhou 310023, China
3. China Railway Siyuan Survey and Design Group Co. Ltd, Wuhan 430063, China
4. Department of Civil Engineering, Hangzhou City University, Hangzhou 310015, China
Download: HTML     PDF(4060KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Shield tunneling in a composite formation of upper clay and lower hard rock can easily cause clay over-excavation, leading to significant deformation of the soil. In order to explore its laws, improvements were made to the traditional flexible membrane compression test. The dynamic excavation of shield tunneling and pressure balance simulation of soil silo were achieved using PFC3D discrete element software. Based on an actual engineering case in Hangzhou, the excavation rates of clay, hard rock, and strata were quantitatively analyzed, and the three were compared with the measured data values, completing the reliability verification. Further research was conducted on the effects of shield tunneling speed, cutterhead rotation speed, pressure of soil silo, and hard rock ratio of strata on clay overexcavation and underexcavation. The research results indicated that the failure law of the compressed soil sample obtained by numerical simulation was similar to that of the test sample. The stable values of the total excavation rate in the three strata were 1.20, 1.18, and 1.24, which were close to the measured values and all indicated the overexcavation of shield tunneling. The decrease in shield tunneling speed, the increase in cutterhead speed, the decrease in pressure of soil silo, and the increase in proportion of hard rock in the excavation section would all lead to the intensification of clay overexcavation to varying degrees.



Key wordsshield tunnel      clay-rock composite stratum      excavation rate      overexcavation quantification      simulation of flexible granular film     
Received: 27 April 2024      Published: 30 May 2025
CLC:  TU 43  
Fund:  国家自然科学基金重点资助项目(51338009);国家自然科学基金面上资助项目(52178399);中国工程院战略研究与咨询资助项目(2025-29-02);中铁第四勘察设计院集团有限公司科研项目(2022K119-W01).
Corresponding Authors: Jian ZHOU     E-mail: qyjdaydayup@zju.edu.cn;zjelim@zju.edu.cn
Cite this article:

Yongjie QI,Yicheng JIANG,Jian ZHOU,Weikang ZHANG,Di ZHANG,Gang WEI. Analysis of overexcavation and underexcavation caused by shield tunneling in clay and rock composite stratum. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1241-1252.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.06.015     OR     https://www.zjujournals.com/eng/Y2025/V59/I6/1241


黏岩复合地层中盾构掘进引起的超欠挖分析

盾构在上软下硬的黏岩复合地层中掘进时,易引起黏土超挖从而导致土体产生大变形. 为了探究其规律,对传统柔性膜压缩试验进行改进,利用PFC3D离散元软件实现盾构动态开挖和土仓压力平衡模拟. 依托杭州某工程定量分析黏土、硬岩及地层的开挖率,与实测数据进行对比及可靠性验证. 研究盾构掘进速度、刀盘转速、土仓压力、地层软硬比对黏土超欠挖的影响. 研究结果表明:通过数值模拟得到的压缩后土样的破坏规律与试验试样破坏规律相似;3种地层中,稳定后的地层总开挖率分别为1.20、1.18、1.24,与实测值接近,均显示盾构超挖;盾构掘进速度降低、刀盘转速提高、土仓压力减小以及开挖断面内硬岩比例增大均会不同程度导致黏土超挖现象的加剧.


关键词: 盾构隧道,  黏岩复合地层,  开挖率,  超挖量化,  柔性颗粒膜模拟 
Fig.1 Geological profile of tunnel passing through clay-rock composite section
Fig.2 Simplified geological distribution diagram of excavation cross-section
Fig.3 Schematic diagram of force principle of granular film
Fig.4 Stress vector diagram of membrane particles before and after loading
Fig.5 Sampling and sample preparation process
Fig.6 Comparison of results of triaxial compression tests on clay
Fig.7 Calibration of clay microscopic parameters
细观参数R/mmφρ/(kg·m?3)Ec/MPakn/ksTσ/kPaSσ/kPaμμw$\bar \sigma_{\mathrm{c}}$/ MPa$ \bar c $/MPa$ \bar \phi $/(°)
1粉质黏土8.7~9.70.55190051.50.50.20.50.2
1淤泥质黏土8.7~9.70.48190051.515.012.50.50.2
1粉质黏土8.7~9.70.48190051.56.04.00.50.2
硬岩层8.7~9.70.43000700070.50.341.54040
弹性膜6.16200071.51×102971×102970.7
Tab.1 Microscopic parameter calibration results
Fig.8 Shenzhen Sansi universal material testing machine (UTM5605) and rock samples
Fig.9 Comparison of results of uniaxial compression tests on rocks
Fig.10 Calibration of rock microscopic parameters
参考文献D/md50/mD/d50xyz维度及土质
Maynar等[28]9.40.910.41.7D1.6D1.7D三维(砂土+黏土)
Karim[29]0.18.7×10?311.52.3D5.5D3D三维(砂土)
6.3×10?316.0
朱伟等[25]60.1540.08.33D5D二维(砂土)
Chen等[30]80.6612.15D3D2.5D/3.0D/4.0D三维(砂土)
0.5414.8
Zhang等[27]0.0750.5625×10?313.35.33D4.84D二维(黏土)
缪林昌等[31]0.13.675×10?327.23.72D4.11D二维(砂土)
王俊等[9]0.80.03225.03D5.5D3.125D三维(砂土)
王振飞等[26]0.123×10?340.04.75D3.75D二维(砂卵石)
龙飞[32]6.40.18434.88.75D6.25D二维(砂土)
江英超[33]0.87×10?3114.32.5D0.75D2.625D砂卵石
Tab.2 Statistics of model parameters in existing research
Fig.11 Schematic diagram of cutterhead model
Fig.12 Discrete eelement model diagram of shield excavation simulation
Fig.13 Simulation step diagram of shield tunneling
Fig.14 Principle and effect diagram of applying pressure of soil silo
Fig.15 Comparison of excavation rates in different layers
Fig.16 Comparison of total excavation rate curves obtained by numerical simulation and measured data
Fig.17 Comparison of results obtained by proposed method and Wang Jun’s method[9]
Fig.18 Variation of excavation rate with excavation speed
Fig.19 Discrete model diagram under different excavation speeds
Fig.20 Variation of excavation rate with rotation speed of cutterhead
Fig.21 Variation of excavation rate with magnitude of pressure of soil silo
Fig.22 Variation of excavation rate with ratio of clay to hard rock
[1]   张亚洲, 温竹茵, 由广明, 等 上软下硬复合地层盾构隧道设计施工难点及对策研究[J]. 隧道建设(中英文), 2019, 39 (4): 669- 676
ZHANG Yazhou, WEN Zhuyin, YOU Guangming, et al Difficulties and countermeasures in design and construction of shield tunnels in upper-soft and lower-hard stratum[J]. Tunnel Construction, 2019, 39 (4): 669- 676
[2]   竺维彬, 米晋生, 王晖, 等 复合地层盾构隧道修建技术创新与展望[J]. 现代隧道技术, 2024, 61 (2): 90- 104
ZHU Weibin, MI Jinsheng, WANG Hui, et al Innovation and prospects of shield tunnelling technology in mixed ground[J]. Modern Tunnelling Technology, 2024, 61 (2): 90- 104
[3]   杨飞, 李嘉, 陈建军 复合地层双线隧道盾构施工地表位移分析[J]. 地基处理, 2022, 4 (5): 430- 436
YANG Fei, LI Jia, CHEN Jianjun Analysis of surface displacement in shield construction of double-line tunnels in composite ground[J]. Journal of Ground Improvement, 2022, 4 (5): 430- 436
[4]   DING J W, ZHANG S, ZHANG H, et al Journal of performance of constructed facilities[J]. Railway Engineering, 2021, 35 (5): 04021057
[5]   齐永洁, 朱建才, 周建, 等 土岩复合地层中盾构施工引起的地表位移预测[J]. 岩土工程学报, 2023, 45 (5): 1054- 1062
QI Yongjie, ZHU Jiancai, ZHOU Jian, et al Prediction of surface displacement caused by shield construction in soil-rock composite strata[J]. Chinese Journal of Geotechnical Engineering, 2023, 45 (5): 1054- 1062
doi: 10.11779/CJGE20220318
[6]   QI Y, HU X, ZHOU S, et al Study on the effect of tunneling and secondary grouting on the deformation of existing pipelines in bedrock raised strata[J]. Transportation Geotechnics, 2024, 45: 101218
doi: 10.1016/j.trgeo.2024.101218
[7]   徐银锋, 杨波, 齐永洁, 等 复合地层中双线隧道引起的土体位移预测[J]. 低温建筑技术, 2024, 46 (3): 125- 130
XU Yinfeng, YANG Bo, QI Yongjie, et al Research on the soil displacement law caused by double line tunnel in upper soft and lower hard strata[J]. Low Temperature Architecture Technology, 2024, 46 (3): 125- 130
[8]   魏纲, 朱德涵, 王哲, 等 复合成层地层盾构隧道施工引起土体变形计算研究[J]. 岩土工程学报, 2024, 46 (5): 919- 926
WEI Gang, ZHU Dehan, WANG Zhe, et al Calculation of soil deformation caused by construction of shield tunnels in composite layered strata[J]. Chinese Journal of Geotechnical Engineering, 2024, 46 (5): 919- 926
doi: 10.11779/CJGE20230151
[9]   王俊, 何川, 胡瑞青, 等 土压平衡盾构掘进对上软下硬地层扰动研究[J]. 岩石力学与工程学报, 2017, 36 (4): 953- 963
WANG Jun, HE Chuan, HU Ruiqing, et al Soil disturbance induced by EPB shield tunnelling in upper-soft and lower-hard ground[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (4): 953- 963
[10]   GUO S, WANG B, ZHANG P, et al Influence analysis and relationship evolution between construction parameters and ground settlements induced by shield tunneling under soil-rock mixed-face conditions[J]. Tunnelling and Underground Space Technology, 2023, 134: 105020
doi: 10.1016/j.tust.2023.105020
[11]   刘重庆, 曾亚武, 朱泽奇, 等 厦门地铁上软下硬地层盾构施工引起的地表沉降研究[J]. 铁道科学与工程学报, 2018, 15 (2): 444- 449
LIU Zhongqing, ZENG Yawu, ZHU Zeqi, et al Study on ground surface settlement induced by shield tunneling in upper-soft and lower-hard ground in Xiamen[J]. Journal of Railway Science and Engineering, 2018, 15 (2): 444- 449
doi: 10.3969/j.issn.1672-7029.2018.02.023
[12]   LV J, LI X, FU H, et al Influence of shield tunnel construction on ground surface settlement under the condition of upper-soft and lower-hard composite strata[J]. Journal of Vibroengineering, 2020, 22 (5): 1126- 1144
doi: 10.21595/jve.2020.20967
[13]   张婧, 温森, 张国建 复合地层中盾构施工地表沉降影响因素分析[J]. 河南大学学报: 自然科学版, 2023, 53 (5): 605- 614
ZHANG Jing, WEN Sen, ZHANG Guojian Analysis of influence factors of shield tunneling on ground settlement in composite strata[J]. Journal of Henan University: Natural Science, 2023, 53 (5): 605- 614
[14]   李世豪, 宋战平 地铁隧道施工地表沉降槽宽度系数取值研究[J]. 公路, 2018, 63 (5): 302- 308
LI Shihao, SONG Zhanping Research on the calculation of the settlement width through influenced by shield tunneling[J]. Highway, 2018, 63 (5): 302- 308
[15]   宋战平, 李世豪, 张学钢, 等 基于修正Peck法的隧道施工全地层变形规律研究[J]. 西安建筑科技大学学报: 自然科学版, 2018, 50 (2): 190- 195
SONG Zhanping, LI Shihao, ZHANG Xuegang, et al Study on strata settlement regular pattern induced by tunnel construction based on Peck formula[J]. Journal of Xi’an University of Architecture and Technology: Natural Science Edition, 2018, 50 (2): 190- 195
[16]   顾荣华, 沈卓恒, 王益坚, 等 盾构掘进引起土体扰动的数值模拟与现场验证[J]. 地基处理, 2023, 5 (1): 33- 42
GU Ronghua, SHEN Zhuoheng, WANG Yijian, et al Numerical simulation and field verification of the soil disturbance caused by shield tunneling in structural soft soil[J]. Journal of Ground Improvement, 2023, 5 (1): 33- 42
[17]   管明哲, 吴叶遥, 董梅, 等. 基于监测数据的杭州粉砂土地层盾构隧道开发风险研究[J]. 地基处理, 2023, 5(5): 398–407.
GUAN Mingzhe, WU Yeyao, DONG Mei, et al. Research on the development risk of silty sand shield tunnel based on monitoring data [J]. Journal of Ground Improvement, 2023, 5(5): 398–407.
[18]   ANAGNOSTOU G, KOVÁRI K The face stability of slurry-shield-driven tunnels[J]. Tunnelling and Underground Space Technology, 1994, 9 (2): 165- 174
doi: 10.1016/0886-7798(94)90028-0
[19]   CIL M B, ALSHIBLI K A 3D analysis of kinematic behavior of granular materials in triaxial testing using DEM with flexible membrane boundary[J]. Acta Geotechnica, 2014, 9 (2): 287- 298
doi: 10.1007/s11440-013-0273-0
[20]   CHEUNG G, O’SULLIVAN C Effective simulation of flexible lateral boundaries in two- and three-dimensional DEM simulations[J]. Particuology, 2008, 6 (6): 483- 500
doi: 10.1016/j.partic.2008.07.018
[21]   WANG Y H, LEUNG S C A particulate-scale investigation of cemented sand behavior[J]. Canadian Geotechnical Journal, 2008, 45 (1): 29- 44
doi: 10.1139/T07-070
[22]   龚晓南. 土力学 [M]. 北京: 中国建筑工业出版社, 2002: 1–30.
[23]   曾远, 周健 砂土的细观参数对宏观特性的影响研究[J]. 地下空间与工程学报, 2008, 4 (3): 499- 503
ZENG Yuan, ZHOU Jian Influence of micro parameters of sandy soil on its macro properties[J]. Chinese Journal of Underground Space and Engineering, 2008, 4 (3): 499- 503
doi: 10.3969/j.issn.1673-0836.2008.03.020
[24]   宁孝梁. 黏性土的细观三轴模拟与微观结构研究 [D]. 杭州: 浙江大学, 2017.
NING Xiaoliang. The meso-simulations of triaxial tests and microstructure study of the cohesive soil [D]. Hangzhou: Zhejiang University, 2017.
[25]   朱伟, 钟小春, 加瑞 盾构隧道垂直土压力松动效应的颗粒流模拟[J]. 岩土工程学报, 2008, 30 (5): 750- 754
ZHU Wei, ZHONG Xiaochun, JIA Rui Simulation on relaxation effect of vertical earth pressure for shield tunnels by particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2008, 30 (5): 750- 754
doi: 10.3321/j.issn:1000-4548.2008.05.021
[26]   王振飞, 张成平 泥水盾构开挖面失稳破坏的颗粒流模拟研究[J]. 中国铁道科学, 2017, 38 (3): 55- 62
WANG Zhenfei, ZHANG Chengping Research on particle flow simulation for excavation face instability of slurry shield[J]. China Railway Science, 2017, 38 (3): 55- 62
doi: 10.3969/j.issn.1001-4632.2017.03.08
[27]   ZHANG Z X, HU X Y, SCOTT K D A discrete numerical approach for modeling face stability in slurry shield tunnelling in soft soils[J]. Computers and Geotechnics, 2011, 38 (1): 94- 104
doi: 10.1016/j.compgeo.2010.10.011
[28]   MAYNAR M J, RODRÍGUEZ L E Discrete numerical model for analysis of earth pressure balance tunnel excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (10): 1234- 1242
doi: 10.1061/(ASCE)1090-0241(2005)131:10(1234)
[29]   KARIM A M. Three-dimensional discrete element modeling of tunneling in sand [D]. Edmonton: University of Alberta, 2007.
[30]   CHEN R P, TANG L J, LING D S, et al Face stability analysis of shallow shield tunnels in dry sandy ground using the discrete element method[J]. Computers and Geotechnics, 2011, 38 (2): 187- 195
doi: 10.1016/j.compgeo.2010.11.003
[31]   缪林昌, 王正兴, 石文博 砂土盾构隧道掘进开挖面稳定理论与颗粒流模拟研究[J]. 岩土工程学报, 2015, 37 (1): 98- 104
MIU Linchang, WANG Zhengxing, SHI Wenbo Theoretical and numerical simulations of face stability around shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (1): 98- 104
doi: 10.11779/CJGE201501011
[32]   龙飞 基于PFC的盾构穿越既有隧道稳定性分析[J]. 土工基础, 2020, 34 (5): 587- 592
LONG Fei Stability analysis of shielded tunnel excavation passing through an existing tunnel using particle flow code[J]. Soil Engineering and Foundation, 2020, 34 (5): 587- 592
[33]   江英超. 盾构掘进对砂卵石地层的扰动机理研究 [D]. 成都: 西南交通大学, 2014.
JIANG Yingchao. Study on the soil disturbance mechanism of shield tunnelling in sandy cobble stratum [D]. Chengdu: Southwest Jiaotong University, 2014.
[1] Sijian ZHOU,Di ZHANG,Jian ZHOU,Ying LI,Xiaonan GONG. Deformation control of shield tunnel operation based on tunnel jet system method[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1427-1435.
[2] Chao WANG,Chunzhou ZHU,Jinfeng ZOU,Bo LIU,Hanqiu ZHANG,Jiangfeng MA. Calculation approach for deformation of adjacent pile foundation caused by diagonal intersection with side penetration construction of shield tunnel[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 557-569.
[3] Han-yuan LI,Xing-gao LI,Yang LIU,Yi YANG,Ming-zhe MA. Longitudinal stress and deformation characteristics of shield tunnel crossing active fault[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 340-352.
[4] Zhe-jian ZHOU,Yi-xiong FAN,Ran FANG,Xue-cheng BIAN. Foundation settlement-induced bending analysis of composite structures in water-conveying shield tunnels[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2476-2488.
[5] Han-yuan LI,Xing-gao LI,Ming-zhe MA,Hao LIU,Yi YANG. Model experimental study on influence of buried fault dislocation on shield tunnel[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 631-639.
[6] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[7] Zi-xin ZHANG,Jia-qi ZHANG,Xin HUANG,Qian-wei ZHUANG. Experimental study on prediction of long-term durability of sealing gasket of shield tunnel[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 118-125.
[8] YANG Chun-shan, WEI Li-xin, MO Hai-hong, HE Ze-gan. Longitudinal rigidity of shield tunnel considering deformation characteristic and joints characteristic of lining[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 358-366.
[9] LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, YE Jun-neng. Tunnel boring machine tunneling-induced ground settlements in soft clay and influence of excavation parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1268-1275.
[10] LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, YE Jun-neng. Tunnel boring machine tunneling-induced ground settlements in soft clay and influence of excavation parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 2-3.
[11] CHEN Ren-peng, LIU Yuan, LIU Sheng-xiang, TANG Lv-jun. Characteristics of upward moving for lining during shield tunnelling construction[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1068-1074.
[12] SHI Hu, YANG Hua-yong, GONG Guo-fang, HOU Dian-qing. Definition and evaluation method for compliance of thrust hydraulic system for shield tunneling machine[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1444-1449.
[13] SHI Hu, YANG Hua-yong, GONG Guo-fang, WANG Lin-tao. Key technologies of shield tunneling machine and present status and prospect of test rigs for tunneling simulation [J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 741-749.
[14] LIU Wei, ZHANG Xiang-jie, TANG Xiao-wu, ZHU Ji, CHEN Ren-peng. Supporting pressure for earth pressure balance tunnel face stability
when tunneling is implemented in saturated sandy soil
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 665-671.
[15] WANG Lin-tao, GONG Guo-fang, SHI Hu. Energy-saving technology of segment erecting process of
shield tunneling machine based on erecting parameters optimization
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2259-2267.