|
|
Back-calculation of outdoor PM2.5 pollutant source around microscale controlled area by genetic-pattern search algorithm |
Hongzhao DONG1,Can JIN1,Wei TANG2,Yini SHE1,*( ),Yingying LIN1 |
1. ITS Joint Research Institute, Zhejiang University of Technology, Hangzhou 310014, China 2. Hangzhou Institute of Environment Sciences, Hangzhou 310014, China |
|
|
Abstract An effective targeted diagnosis method, distributed traceability method for atmospheric pollutants combining Gaussian plume model and genetic-pattern search algorithm, was proposed, aiming at air pollutants that may occur in the micro-scale control area. The corresponding relationship between the calculated pollutant concentration obtained from pollution backcalculation model and the observation value of the monitoring sensor was used as the objective function. Pattern search algorithm was embedded in the genetic algorithm to speed up the search process of the inverse calculation model, then to inversely calculate the intensity and location of the pollution source. A validation experiment was conducted by monitoring the PM2.5 mass concentration, meteorology and other data based on the atmospheric sensor data of Hangzhou Asian Games cricket stadium in October 2021. Results showed, compared with other methods, the effect of the improved genetic-pattern search algorithm for multi-dimensional variables was better, and the location and intensity of pollution sources could be calculated more quickly and accurately. This research can provide suggested solution for environmental emergencies of air pollution in micro-scale control regions.
|
Received: 29 May 2023
Published: 25 May 2024
|
|
Fund: 浙江省公益技术研究资助项目(LGF20F030001);杭州市农业与社会发展科研资助项目(20201203B158). |
Corresponding Authors:
Yini SHE
E-mail: qiche@zjut.edu.cn
|
基于遗传-模式搜索算法的微尺度管控区域大气污染物PM2.5溯源
针对微尺度管控区域可能发生的大气污染提出有效的靶向诊断方法?结合高斯烟羽模型和遗传-模式搜索算法的大气污染物分布式溯源方法. 将污染源反算模型得到的污染物理论质量浓度与传感器网络观测值的数据对应关系作为目标函数,使用模式搜索算法嵌入遗传算法加快反算模型的搜索过程,反算得到污染源强度和位置. 依托杭州市亚运板球场馆大气感知器网络进行实验验证,监测2021年10月PM2.5质量浓度、气象数据,对所提出的混合式大气污染溯源方法进行实验验证. 实验结果表明:改进遗传-模式搜索算法对于多维变量的搜索效果较好,能快速精准地反算污染源的位置和强度,可以为微尺度管控区域突发性气体污染防治提供应急决策参考.
关键词:
源强反算,
遗传-模式搜索算法,
高斯烟羽模型,
微尺度管控,
颗粒物污染溯源
|
|
[1] |
CHEN Y, LUO X, ZHAO Z, et al Summer-winter differences of PM2.5 toxicity to human alveolar epithelial cells (A549) and the roles of transition metals[J]. Ecotoxicology and Environmental Safety, 2018, 165 (9): 505- 509
|
|
|
[2] |
QIU X, DUAN L, CHAI F, et al Deriving high-resolution emission inventory of open biomass burning in China based on satellite observations[J]. Environmental Science and Technology, 2016, 50 (21): 11779- 11779
doi: 10.1021/acs.est.6b02705
|
|
|
[3] |
HUANG J, CHEN Z, ZHOU B, et al Cause analysis of PM2.5 pollution during the COVID-19 lockdown in Nanning, China[J]. Scientific Reports, 2021, (11): 11119
|
|
|
[4] |
TIAN Y, HARRISON R M, FENG Y, et al Size-resolved source apportionment of particulate matter from a megacity in northern China based on one-year measurement of inorganic and organic components[J]. Environmental Pollution, 2021, 289: 117932
|
|
|
[5] |
HAUPT S E, HAUPT R L, YOUNG G S A mixed integer genetic algorithm used in biological and chemical defense applications[J]. Soft Computing, 2011, 15 (1): 51- 59
doi: 10.1007/s00500-009-0516-z
|
|
|
[6] |
LIU X, ZHAI Z Inverse modeling methods for indoor airborne pollutant tracking: literature review and fundamentals[J]. Indoor Air, 2007, 17 (6): 419- 438
doi: 10.1111/j.1600-0668.2007.00497.x
|
|
|
[7] |
WANG Y, HUANG H, HUANG L, et al Source term estimation of hazardous material releases using hybrid genetic algorithm with composite cost functions[J]. Engineering Applications of Artificial Intelligence, 2018, 75 (11): 102- 113
|
|
|
[8] |
MONACHE L D, LUNDQUIST J K, KOSOVIC B, et al Bayesian inference and Markov Chain Monte Carlo sampling to reconstruct a contaminant source on a continental scale[J]. Journal of Applied Meteorology and Climatology, 2008, 47 (10): 2600- 2613
doi: 10.1175/2008JAMC1766.1
|
|
|
[9] |
LEE B, CHO S, LEE S, et al Development of a smoke dispersion forecast system for Korean forest fires[J]. Forests, 2019, 10 (3): 219
doi: 10.3390/f10030219
|
|
|
[10] |
ZHANG Q, GUO R, ZHANG C, et al Radioactive airborne effluents and the environmental impact assessment of CAP1400 nuclear power plant under normal operation[J]. Nuclear Engineering and Design, 2014, 280 (12): 579- 585
|
|
|
[11] |
BANAN Z, GERNAND J M Emissions of particulate matter due to Marcellus Shale gas development in Pennsylvania: mapping the implications[J]. Energy Policy, 2021, 148 (1): 111979
|
|
|
[12] |
HE P, ZHENG B, ZHENG J, et al Urban PM2.5 diffusion analysis based on the improved Gaussian smoke plume model and support vector machine[J]. Aerosol and Air Quality Research, 2018, 18 (12): 3177- 3186
doi: 10.4209/aaqr.2017.06.0223
|
|
|
[13] |
AKCELIK V, BIROS G, GHATTAS O, et al A variational finite element method for source inversion for convective-diffusive transport[J]. Finite Elements in Analysis and Design, 2003, 39 (8): 683- 705
doi: 10.1016/S0168-874X(03)00054-4
|
|
|
[14] |
MA D, TAN W, ZHANG Z, et al Parameter identification for continuous point emission source based on Tikhonov regularization method coupled with particle swarm optimization algorithm[J]. Journal of Hazardous Materials, 2017, 325: 239- 250
doi: 10.1016/j.jhazmat.2016.11.071
|
|
|
[15] |
THOMSON L C, HIRST B, GIBSON G, et al An improved algorithm for locating a gas source using inverse methods[J]. Atmospheric Environment, 2007, 41 (6): 1128- 1134
doi: 10.1016/j.atmosenv.2006.10.003
|
|
|
[16] |
梁俊丽, 孔维华, 费文华, 等 基于复杂地形的高斯烟羽模型改进[J]. 环境工程学报, 2016, 10 (6): 5 LIANG Junli, KONG Weihua, FEI Wenhua, et al lmprovement of Gaussian plume model in complex terrain[J]. Chinese Journal of Environmental Engineering, 2016, 10 (6): 5
doi: 10.12030/j.cjee.201501066
|
|
|
[17] |
GROSSEL S S Chemical process safety: fundamentals with applications, 2nd edition (2002)[J]. Journal of Loss Prevention in the Process Industries, 2002, 15 (15): 565- 566
|
|
|
[18] |
胡鸿昊, 李秀娟, 于俊锋, 等 基于耦合模拟的污水管网入流入渗定量识别[J]. 浙江大学学报:工学版, 2022, 56 (11): 8 HU Honghao, LI Xiujuan, YU Junfeng, et al Quantitative identification of inflow and infiltration of sanitary sewer system based on coupling simulation[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (11): 8
|
|
|
[19] |
向胜涛, 王达 基于改进量子遗传算法的模型交互修正方法[J]. 浙江大学学报:工学版, 2022, 56 (1): 11 XIANG Shengtao, WANG Da Model interactive modification method based on improved quantum genetic algorithm[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (1): 11
|
|
|
[20] |
谢劭峰, 曾印, 张继洪, 等 基于MLP神经网络的大气加权平均温度模型[J]. 大地测量与地球动力学, 2022, 42 (11): 1105- 1110 XIE Shaofeng, ZENG Yin, ZHANG Jihong, et al Atmospheric weighted mean temperature model based on mlp neural network[J]. Journal of Geodesy and Geodynamics, 2022, 42 (11): 1105- 1110
|
|
|
[21] |
生态环境部. 污染源源强核算技术指南准则: HJ884—2018 [S]. 北京: 中国环境科学出版社, 2018.
|
|
|
[22] |
张建文, 王煜薇, 郑小平, 等 基于混合遗传- Nelder Mead单纯形算法的源强及位置反算[J]. 系统工程理论与实践, 2011, 31 (8): 1581- 1587 ZHANG Jianwen, WANG Yuwei, ZHENG Xiaoping, et al Back-calculation of source strength and position by a hybrid genetic-Nelder Mead simplex algorithm[J]. Systems Engineering: Theory and Practice, 2011, 31 (8): 1581- 1587
|
|
|
[23] |
沈泽亚, 郎建垒, 程水源, 等 典型耦合优化算法在源项反演中的对比研究[J]. 中国环境科学, 2019, 39 (8): 3207- 3214 SHEN Zeya, LANG Jianlei, CHENG Shuiyuan, et al Comparative and study on the application of typical hybrid algorithms in source parameter inversions[J]. China Environmental Science, 2019, 39 (8): 3207- 3214
doi: 10.3969/j.issn.1000-6923.2019.08.010
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|