|
|
Multi-sided Coons patches based on generalized barycentric coordinates |
Chuanjiang LUO( ),Yajuan LI,Chongyang DENG*( ) |
School of Science, Hangzhou Dianzi University, Hangzhou 310018, China |
|
|
Abstract The concept of multi-sided Coons patches was introduced to enhance the efficiency of surface ‘hole-filling’, which leverage the Boolean sum methodology of bilinear Coons patches and serve as a direct extension of bilinear Coons patches within the polygonal domain. The bilinear Coons patches were reformulated by using bilinear coordinates. The parameter domain was expanded to encompass a convex polygonal domain. The bilinear coordinates on the rectangular domain were replaced by generalized barycentric coordinates on the convex polygonal domain, thereby facilitating the construction of the multi-sided Coons patches. Theoretical derivations and numerical examples demonstrate that the proposed multi-sided Coons patches possess boundary interpolation properties, offer straightforward construction methodologies, exhibit high computational efficiency, and provide a partial resolution to the hole-filling problem.
|
Received: 15 July 2023
Published: 23 January 2024
|
|
Fund: 国家自然科学基金资助项目(61872121) |
Corresponding Authors:
Chongyang DENG
E-mail: lcj1201@hdu.edu.cn;dcy@hdu.edu.cn
|
基于广义重心坐标的多边形域Coons面片
为了提高曲面“补洞”效率,提出多边形域Coons面片, 继承了构造双线性Coons面片的布尔和方法, 是双线性Coons曲面在凸多边形域上的直接推广. 利用双线性坐标改写双线性Coons面片, 将参数域推广到凸多边形域, 用凸多边形域上的广义重心坐标代替矩形域上的双线性坐标, 构造多边形域Coons面片. 理论推导和数值算例表明, 所提的多边形域Coons面片具有边界插值性, 构造简单,计算高效, 能够部分解决 “补洞” 问题.
关键词:
Coons面片,
广义重心坐标,
多边形域,
补洞
|
|
[1] |
刘海燕, 朱春钢, 李彩云. 基于边界曲线的N边域toric曲面片生成[C]// 第5届全国几何设计与计算学术会议论文集. 广州: [s. n. ], 2011. LIU Haiyan, ZHU Chungang, LI Caiyun. Constructing N-sided toric surface patches from boundary curves [C]// Proceedings of the 5th National Conference on Geometric Design and Computing. Guangzhou: [s. n. ], 2011.
|
|
|
[2] |
COONS S A. Surfaces for computer aided design of space forms [EB/OL]. [2023-07-15]. https://dspace.mit.edu/handle/1721.1/149362.
|
|
|
[3] |
FARIN G. Curves and surfaces for computer-aided geometric design: a practical guide [M]. [S. l. ]: Elsevier, 2014.
|
|
|
[4] |
GREGORY J A, ZHOU J Irregular C2 surface construction using bi-polynomial rectangular patches[J]. Computer Aided Geometric Design, 1999, 16 (5): 423- 435
doi: 10.1016/S0167-8396(99)00011-4
|
|
|
[5] |
SHI K L, YONG J H, SUN J G, et al Filling n-sided regions with G1 triangular Coons B-spline patches[J]. The Visual Computer, 2010, 26 (6): 791- 800
|
|
|
[6] |
YANG Y J, YONG J H, ZHANG H, et al A rational extension of Piegl’s method for filling n-sided holes[J]. Computer-Aided Design, 2006, 38 (11): 1166- 1178
doi: 10.1016/j.cad.2006.07.001
|
|
|
[7] |
LAI S, CHENG F Explicit construction of C2 surfaces for meshes of arbitrary topology[J]. Computer-Aided Design and Applications, 2017, 14 (6): 805- 814
doi: 10.1080/16864360.2017.1288366
|
|
|
[8] |
VÁRADY T, SALVI P, KARIKÓ G. A multi-sided Bézier patch with a simple control structure [C]//Computer Graphics Forum. [S. l. ]: Wiley, 2016: 307-317.
|
|
|
[9] |
SALVI P, VÁRADY T, ROCKWOOD A Ribbon-based transfinite surfaces[J]. Computer Aided Geometric Design, 2014, 31 (9): 613- 630
doi: 10.1016/j.cagd.2014.06.006
|
|
|
[10] |
HAMANN B, TSAI P Y A tessellation algorithm for the representation of trimmed NURBS surfaces with arbitrary trimming curves[J]. Computer-Aided Design, 1996, 28 (6/7): 461- 472
|
|
|
[11] |
VÁRADY T, SALVI P, ROCKWOOD A Transfinite surface interpolation with interior control[J]. Graphical Models, 2012, 74 (6): 311- 320
doi: 10.1016/j.gmod.2012.03.003
|
|
|
[12] |
KATO K Generation of n-sided surface patches with holes[J]. Computer-Aided Design, 1991, 23 (10): 676- 683
doi: 10.1016/0010-4485(91)90020-W
|
|
|
[13] |
SABIN M. Transfinite surface interpolation [C]// IMA Conference on the Mathematics of Surfaces. New York: Oxford University Press, 1996: 517-534.
|
|
|
[14] |
GORDON W J. Spline-blended surface interpolation through curve networks [J]. Journal of Mathematics and Mechanics, 1969: 931-952.
|
|
|
[15] |
GORDON W J Blending-function methods of bivariate and multivariate interpolation and approximation[J]. SIAM Journal on Numerical Analysis, 1971, 8 (1): 158- 177
doi: 10.1137/0708019
|
|
|
[16] |
GREGORY J A, LAU V K H, ZHOU J. Smooth parametric surfaces and n-sided patches [EB/OL]. [2023-07-10]. https://doi.org/10.1007/978-94-009-2017-0_14.
|
|
|
[17] |
VÁRADY T, ROCKWOOD A, SALVI P Transfinite surface interpolation over irregular n-sided domains[J]. Computer-Aided Design, 2011, 43 (11): 1330- 1340
doi: 10.1016/j.cad.2011.08.028
|
|
|
[18] |
SALVI P, VÁRADY T Multi-sided Bézier surfaces over concave polygonal domains[J]. Computers and Graphics, 2018, 74: 56- 65
doi: 10.1016/j.cag.2018.05.006
|
|
|
[19] |
VÁRADY T, SALVI P, VAITKUS M, et al Multi-sided Bézier surfaces over curved, multi-connected domains[J]. Computer Aided Geometric Design, 2020, 78: 101828
doi: 10.1016/j.cagd.2020.101828
|
|
|
[20] |
QIN K, LI Y, DENG C Blending Bézier patch for multi-sided surface modeling[J]. Computer Aided Geometric Design, 2023, 105: 102222
doi: 10.1016/j.cagd.2023.102222
|
|
|
[21] |
SALVI P. A multi-sided generalization of the C0 Coons patch [EB/OL]. [2023-07-15]. https://arxiv.org/abs/2002.11347.
|
|
|
[22] |
SEDERBERG T W, ZHENG J Birational quadrilateral maps[J]. Computer Aided Geometric Design, 2015, 32: 1- 4
doi: 10.1016/j.cagd.2014.11.001
|
|
|
[23] |
FLOATER M S The inverse of a rational bilinear mapping[J]. Computer Aided Geometric Design, 2015, 33: 46- 50
doi: 10.1016/j.cagd.2015.01.002
|
|
|
[24] |
WACHSPRESS E L. A rational finite element basis [M]. New York: Academic Press, 1975.
|
|
|
[25] |
WARREN J Barycentric coordinates for convex polytopes[J]. Advances in Computational Mathematics, 1996, 6 (1): 97- 108
doi: 10.1007/BF02127699
|
|
|
[26] |
FLOATER M S Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20 (1): 19- 27
doi: 10.1016/S0167-8396(03)00002-5
|
|
|
[27] |
JOSHI P, MEYER M, DEROSE T, et al Harmonic coordinates for character articulation[J]. ACM Transactions on Graphics, 2007, 26 (3): 71- 81
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|