Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (1): 29-39    DOI: 10.3785/j.issn.1008-973X.2024.01.004
    
Obstacle recognition of unmanned rail electric locomotive in underground coal mine
Tun YANG1,3(),Yongcun GUO1,2,3,*(),Shuang WANG1,2,3,Xin MA1,3
1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
2. Anhui Key Laboratory of Mine Intelligent Equipment and Technology, Anhui University of Science and Technology, Huainan 232001, China
3. School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China
Download: HTML     PDF(2463KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The PDM-YOLO model for accurate real-time obstacle detection in unmanned electric locomotives was proposed in order to address the problem of low accuracy of obstacle recognition in existing coal mine underground unmanned electric locomotives due to poor roadway environments. The ordinary convolution in the C3 module of the conventional YOLOv5 model was replaced with partial convolution to construct the C3_P feature extraction module, which effectively reduced the floating-point operations (FLOPs) and computational delay of the model. The improved decoupled head was used to decouple the prediction head of the conventional YOLOv5 model in order to improve the convergence speed of the model and the accuracy of obstacle recognition. The Mosaic data augmentation method was optimized to enrich the feature information of the training images and enhance the generalizability and robustness of the model. The experimental results showed that the mean average precision (mAP) of the PDM-YOLO model reached 96.3% and the average detection speed reached 109.2 frames per second on the self-built dataset. The detection accuracy of the PDM-YOLO model on the PASCAL VOC public dataset is higher than that of the existing mainstream YOLO series models.



Key wordsunmanned electric locomotive      YOLO      obstacle recognition      partial convolution      decoupled head      Mosaic data augmentation     
Received: 30 May 2023      Published: 07 November 2023
CLC:  TP 391  
Fund:  安徽省高校杰出青年科研资助项目(2022AH020056);国家自然科学基金资助项目(52274152);中国科协青年托举人才工程资助项目(YESS20220337)
Corresponding Authors: Yongcun GUO     E-mail: yangtun0324@126.com;guoyc1965@126.com
Cite this article:

Tun YANG,Yongcun GUO,Shuang WANG,Xin MA. Obstacle recognition of unmanned rail electric locomotive in underground coal mine. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 29-39.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.01.004     OR     https://www.zjujournals.com/eng/Y2024/V58/I1/29


煤矿井下无人驾驶轨道电机车障碍物识别

针对现有煤矿井下无人驾驶轨道电机车因巷道环境恶劣导致障碍物识别精度低的问题,提出用于无人驾驶电机车障碍物精准实时检测的PDM-YOLO模型. 基于YOLOv5,将模型C3模块中的传统卷积替换为部分卷积,构建C3_P特征提取模块,有效减少模型的浮点运算量(FLOPs)与计算延迟. 采用改进后的解耦头,对传统YOLOv5的预测头进行解耦,提高模型的收敛速度及对障碍物的识别精度. 优化Mosaic数据增强方法,丰富训练图像的特征信息,提高模型的普适性和鲁棒性. 实验结果表明,PDM-YOLO模型在自制数据集上的平均检测精度(mAP)达到96.3%,平均检测速度达到109.2 帧/s,PDM-YOLO模型在PASCAL VOC公共数据集上的检测精度高于现有主流的YOLO系列模型.


关键词: 无人驾驶电机车,  YOLO,  障碍物识别,  部分卷积,  解耦头,  Mosaic数据增强 
Fig.1 Partial convolution process
Fig.2 Structure of C3 and C3_ P
Fig.3 Structure of several prediction heads
模型 FLOPs/109 v/(帧·s?1
YOLOv5-YOLOX解耦头 56.3 89.5
YOLOv5-改进的解耦头 36.5 104.2
Tab.1 Comparison of total floating-point operations and detection speed for two decoupled heads added to model
Fig.4 Comparison of Mosaic data enhancement effects before and after optimization
Fig.5 Structure of PDM-YOLO model
Fig.6 Two types of C3_ P and Bottleneck
Fig.7 Detection dataset of partial obstacle
超参数 参数值
输入图像尺寸(image size) 640×640
学习率(learning rate) 0.01
动量(momentum) 0.937
权重衰减系数(weight decay) 0.0005
色调(hue augmentation) 0.015
饱和度(saturation augmentation) 0.7
曝光度(value augmentation) 0.4
Mosaic 1.0
Mixup 1.0
Tab.2 Model training hyper-parameter setting
模型 AP0.5/% mAP0.5/% FLOPs/109
Miner Locomotive Mine_car Flat_car Gangue
YOLOv5 93.1 97.8 92.3 85.3 97.2 93.1 15.9
YOLOv5-C3_P 96.9 97.5 94.5 97.6 92.3 95.7 13.0
YOLOv5-Decoupled 96.4 97.8 93.1 99.5 93.8 96.1 36.5
YOLOv5-Mosaic9 96.3 98.5 95.2 78.3 97.6 93.2 15.9
PDM-YOLO 96.3 97.7 94.6 99.1 93.7 96.3 33.4
Tab.3 Comparative analysis of ablation
Fig.8 Comparison of training loss
模型 AP0.5/% mAP0.5/% FLOPs /109 v/(帧·s?1) 内存/MB
Miner Locomotive Mine_car Flat_car Gangue
YOLOv3 94.1 96.6 91.2 92.3 91.6 93.2 154.6 27.0 246.4
YOLOv4 94.2 97.5 93.0 90.1 90.8 93.1 141.1 31.8 256.1
YOLOv3-Tiny 92.3 93.8 91.8 80.6 86.4 88.9 12.9 117.8 34.7
YOLOv4-Tiny 91.3 93.4 91.9 80.8 86.1 88.7 16.1 126.5 23.6
YOLOv5 93.1 97.8 92.3 85.3 97.2 93.1 15.9 118.9 14.4
YOLOv6 93.8 96.2 93.2 87.2 97.2 93.5 44.1 109.8 38.0
YOLOv7 95.1 97.1 92.3 90.8 93.1 93.7 26.1 105.2 19.0
YOLOv8 94.2 97.8 91.7 92.9 92.8 93.9 28.4 111.3 22.5
PDM-YOLO 96.3 97.7 94.6 99.1 93.7 96.3 33.4 109.2 26.6
Tab.4 Comparative analysis of different models
Fig.9 Comparison of PDM-YOLO and YOLOv5 detection results
场景 图像编号 PDM-YOLO检测结果 YOLOv5检测结果
障碍物部分遮挡 A1,B1 无漏检 漏检矿工
A2,B2 无漏检 漏检矿工
A3,B3 无漏检 漏检矿工
光照不足 A4,B4 无漏检 漏检矿工
A5,B5 无漏检 漏检矿工
A6,B6 无漏检 漏检矿工
小目标障碍物 A7,B7 无漏检 漏检矸石
A8,B8 无漏检 漏检矸石
A9,B9 无漏检 漏检矸石
远距离障碍物 A10,B10 无漏检 漏检矿工
A11,B11 无漏检 漏检矿工
A12,B12 无漏检 漏检矿工及煤矿运输小车
Tab.5 Comparative analysis of test results between PDM-YOLO and YOLOv5
模型 Nc Nf Nm Nz
YOLOv3 2 618 48 191 2 857
YOLOv4 2 656 42 159 2 857
YOLOv3-Tiny 2 515 59 283 2 857
YOLOv4-Tiny 2 554 51 252 2 857
YOLOv5 2 675 31 151 2 857
YOLOv6 2 652 47 158 2 857
YOLOv7 2 686 36 135 2 857
YOLOv8 2 692 42 123 2 857
PDM-YOLO 2 786 19 52 2 857
Tab.6 Comparison of obstacle detection numbers
模型 PASCAL VOC 2007 PASCAL VOC 2012
mAP0.5 /% mAP0.5:0.95 /% mAP0.5 /% mAP0.5:0.95 /%
YOLOv5 68.7 48.8 70.6 48.4
YOLOv6 61.4 43.3 61.9 43.2
YOLOv7 67.6 47.8 69.9 49.8
YOLOv8 66.1 48.9 66.3 49.7
PDM-YOLO 70.9 49.0 71.1 49.6
Tab.7 Comparison of detection accuracy of different models on public datasets
[1]   王国法 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术, 2022, 50 (1): 1- 27
WANG Guofa New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology, 2022, 50 (1): 1- 27
doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
[2]   葛世荣, 胡而已, 李允旺 煤矿机器人技术新进展及新方向[J]. 煤炭学报, 2023, 48 (1): 54- 73
GE Shirong, HU Eryi, LI Yunwang New progress and direction of robot technology in coal mine[J]. Journal of China Coal Society, 2023, 48 (1): 54- 73
[3]   韩江洪, 卫星, 陆阳, 等 煤矿井下机车无人驾驶系统关键技术[J]. 煤炭学报, 2020, 45 (6): 2104- 2115
HAN Jianghong, WEI Xing, LU Yang, et al Driverless technology of underground locomotive in coal mine[J]. Journal of China Coal Society, 2020, 45 (6): 2104- 2115
[4]   FARSHAD G, ESMAEEL K, MOHAMMAD R Real-time obstacle detection by stereo vision and ultrasonic data fusion[J]. Measurement, 2022, 190: 110718
doi: 10.1016/j.measurement.2022.110718
[5]   靳舒凯, 魏冠楠, 王春明, 等 煤矿副井矿车装载物智能识别方法[J]. 工矿自动化, 2022, 48 (4): 14- 19
JIN Shukai, WEI Guannan, WANG Chunming, et al Intelligent identification method for mine car load in coal mine auxiliary shaft[J]. Journal of Mine Automation, 2022, 48 (4): 14- 19
[6]   卢万杰, 付华, 赵洪瑞 基于深度学习算法的矿用巡检机器人设备识别[J]. 工程设计学报, 2019, 26 (5): 527- 533
LU Wanjie, FU Hua, ZHAO Hongrui Equipment recognition of mining patrol robot based on deep learning algorithm[J]. Chinese Journal of Engineering Design, 2019, 26 (5): 527- 533
[7]   李伟山, 卫晨, 王琳 改进的Faster RCNN煤矿井下行人检测算法[J]. 计算机工程与应用, 2019, 55 (4): 200- 207
LI Weishan, WEI Chen, WANG Lin Improved faster RCNN approach for pedestrian detection in underground coal mine[J]. Computer Engineering and Applications, 2019, 55 (4): 200- 207
[8]   PAN H, SHI Y, LEI X, et al Fast identification model for coal and gangue based on the improved tiny YOLO v3[J]. Journal of Real-Time Image Processing, 2022, 19 (3): 687- 701
doi: 10.1007/s11554-022-01215-1
[9]   张庆贺, 陈晨, 袁亮, 等 基于DIC和YOLO算法的复杂裂隙岩石破坏过程动态裂隙早期智能识别[J]. 煤炭学报, 2022, 47 (3): 1208- 1219
ZHANG Qinghe, CHEN Chen, YUAN Liang, et al Early and intelligent recognition of dynamic cracks during damage of complex fractured rock masses based on DIC and YOLO algorithms[J]. Journal of China Coal Society, 2022, 47 (3): 1208- 1219
[10]   李飞, 胡坤, 张勇, 等 基于混合域注意力 YOLOv4 的输送带纵向撕裂多维度检测[J]. 浙江大学学报: 工学版, 2022, 56 (11): 2156- 2167
LI Fei, HU Kun, ZHANG Yong, et al Multi-dimensional detection of longitudinal tearing of conveyor belt based on YOLOv4 of hybrid domain attention[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (11): 2156- 2167
[11]   HOWARD A, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications. [EB/OL]. [2023-05-15]. https://doi.org/10.48550/arXiv.1704.04861.
[12]   ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6848–6856.
[13]   HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1577–1586.
[14]   CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks [EB/OL]. [2023-05-15]. https://doi.org/10.48550/arXiv.2303.03667.
[15]   GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021 [EB/OL]. [2023-05-15]. https://doi.org/10.48550/arXiv.2107.08430.
[16]   BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. [2023-05-15]. https://doi.org/10.48550/arXiv.2004.10934.
[17]   LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
[18]   LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
[19]   曾耀, 高法钦 基于改进YOLOv5的电子元件表面缺陷检测算法[J]. 浙江大学学报: 工学版, 2023, 57 (3): 455- 465
ZENG Yao, GAO Faqin Surface defect detection algorithm of electronic components based on improved YOLOv5[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (3): 455- 465
[20]   HE Y, LIU Z A feature fusion method to improve the driving obstacle detection under foggy weather[J]. IEEE Transactions on Transportation Electrification, 2021, 7 (4): 2505- 2515
doi: 10.1109/TTE.2021.3080690
[21]   GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
[22]   REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
[23]   HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
[24]   REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2016: 779-788.
[25]   REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517-6525.
[26]   REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. [2023-05-15]. https://doi.org/10.48550/arXiv.1804.02767
[27]   徐印赟, 江明, 李云飞, 等 基于改进YOLO及NMS的水果目标检测[J]. 电子测量与仪器学报, 2022, 36 (4): 114- 123
XU Yinyun, JIANG Ming, LI Yunfei, et al Fruit target detection based on improved YOLO and NMS[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36 (4): 114- 123
[1] Siyi QIN,Shaoyan GAI,Feipeng DA. Video object detection algorithm based on multi-level feature aggregation under mixed sampler[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 10-19.
[2] Xin JIN,Jian-jun ZHUANG,Zi-heng XU. Lightweight YOLOv5s network-based algorithm for identifying hazardous objects under vehicles[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1516-1526.
[3] Hao-jie FANG,Hong-zhao DONG,Shao-xuan LIN,Jian-yu LUO,Yong FANG. Driver fatigue state detection method based on multi-feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1287-1296.
[4] Yan ZHANG,Jing-xue SUN,Ye-mei SUN,Shu-dong LIU,Chuan-qi WANG. Lightweight object detection based on split attention and linear transformation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1195-1204.
[5] Bai-cheng BIAN,Tian CHEN,Ru-jun WU,Jun LIU. Improved YOLOv3-based defect detection algorithm for printed circuit board[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 735-743.
[6] Qing-lu MA,Jia-ping LU,Xiao-yao TANG,Xue-feng DUAN. Improved YOLOv5s flame and smoke detection method in road tunnels[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 784-794.
[7] Yao ZENG,Fa-qin GAO. Surface defect detection algorithm of electronic components based on improved YOLOv5[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 455-465.
[8] Tian-le YUAN,Ju-long YUAN,Yong-jian ZHU,Han-chen ZHENG. Surface defect detection algorithm of thrust ball bearing based on improved YOLOv5[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2349-2357.
[9] Fei LI,Kun HU,Yong ZHANG,Wen-shan WANG,Hao JIANG. Multi-dimensional detection of longitudinal tearing of conveyor belt based on YOLOv4 of hybrid domain attention[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2156-2167.
[10] Yun-zuo ZHANG,Wei GUO,Zhao-quan CAI,Wen-bo LI. Remote sensing image target detection combining multi-scale and attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2215-2223.
[11] Hong-zhao DONG,Hao-jie FANG,Nan ZHANG. Multi-scale object detection algorithm for recycled objects based on rotating block positioning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 16-25.
[12] Wen-bin XIN,Hui-min HAO,Ming-long BU,Yuan LAN,Jia-hai HUANG,Xiao-yan XIONG. Static gesture real-time recognition method based on ShuffleNetv2-YOLOv3 model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1815-1824.