1. College of Mechanical Engineering, Guangxi University, Nanning 530004, China 2. Department of Mechanical and Marine Engineering, Beibu Gulf University, Qinzhou 535011, China 3. Guangxi Key Laboratory of Manufacturing Systems and Advanced Manufacturing Technology, Guangxi University, Nanning 530004, China
A deep reinforcement learning-based optimization method for CNC milling machining parameters was proposed to improve the machine tool effectiveness and the machining efficiency in CNC machining, and the applicability of deep reinforcement learning to machining parameters optimization problems was explored. The combined cutting force and material removal rate were selected as the optimization objectives of effectiveness and efficiency. The optimization function of combined cutting force and milling parameters were constructed using genetic algorithm optimization back propagation neural network (GA-BPNN) and the optimization function of material removal rate was established using empirical formulas. The competing network architecture (Dueling DQN) algorithm was applied to obtain Pareto frontier for combined cutting force and material removal rate multi-objective optimization and the decision solution was selected from Pareto frontier by combining the superior-inferior solution distance method and the entropy value method. The effectiveness of the Dueling DQN algorithm for machining parameter optimization was verified based on milling tests on 45 steel. Compared with the empirically selected machining parameters, the machining solution obtained by Dueling DQN optimization resulted in 8.29% reduction of combined cutting force and 4.95% improvement of machining efficiency, which provided guidance for the multi-objective optimization method of machining parameters and the selection of machining parameters.
Qi-lin DENG,Juan LU,Yong-hui CHEN,Jian FENG,Xiao-ping LIAO,Jun-yan MA. Optimization method of CNC milling parameters based on deep reinforcement learning. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2145-2155.
Tab.6Comparison of optimized value of combined cutting force with measured value
Fig.5Pareto front solution results for each algorithm
方法
N
MID
RAS
U/s
Dueling DQN
173
26.014
0.013
1 063
DDPG
92
39.161
0.025
1 052
DQN
123
29.589
0.018
1 065
NSGA-II
140
28.713
0.018
501
Tab.7Comparison of the optimization performance of different algorithms for multi-objective optimization problems with milling machining parameters
方法
n/(r·min?1)
f/(mm·r?1)
ae/mm
ap/mm
Dueling DQN
1 700.000
0.103
6.000
0.411
DDPG
1 808.154
0.116
5.972
0.349
DQN
1 809.091
0.098
6.000
0.404
NSGA-II
1 720.582
0.119
5.984
0.357
方法
Fc&/N
Fc*/N
R/(mm3·min?1)
Dueling DQN
29.194
30.120
431.797
DDPG
32.847
33.463
437.158
DQN
33.211
34.327
429.753
NSGA-II
33.117
33.728
437.403
Tab.8Comparison of combined cutting forces and material removal rate results for each method optimization
方法
n/(r·min?1)
f/(mm·r?1)
ae/mm
ap/mm
Dueling DQN
1 700
0.103
6
0.411
经验铣削参数
1 900
0.080
6
0.450
方法
Fc&/N
R/(mm3·min?1)
$ G_{\rm{c}}^{} $/%
$ G_{\rm{R}}^{} $/%
Dueling DQN
29.194
431.797
8.29
4.95
经验铣削参数
31.614
410.400
Tab.9Comparison of Dueling DQN optimization results with empirical results
[1]
SAHU N K, ANDHARE A B Multi-objective optimization for improving machinability of Ti-6Al-4V using RSM and advanced algorithms[J]. Journal of Computational Design and Engineering, 2019, 6 (1): 1- 12
doi: 10.1016/j.jcde.2018.04.004
[2]
SHIHAB S K, GATTMAH J, KADHIM H M Experimental investigation of surface integrity and multi-objective optimization of end milling for hybrid Al7075 matrix composites[J]. Silicon, 2020, 13 (5): 1403- 1419
[3]
XIE H B, WANG Z J Study of cutting forces using FE, ANOVA, and BPNN in elliptical vibration cutting of titanium alloy Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105 (12): 5105- 5120
doi: 10.1007/s00170-019-04537-w
[4]
TIEN D H, DUC Q T, VAN T N, et al Online monitoring and multi-objective optimization of technological parameters in high-speed milling process[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112 (9-10): 2461- 2483
doi: 10.1007/s00170-020-06444-x
[5]
李建斌, 武颖莹, 李鹏宇, 等 基于局部线性嵌入和支持向量机回归的TBM施工参数预测[J]. 浙江大学学报: 工学版, 2021, 55 (8): 1426- 1435 LI Jian-bin, WU Ying-ying, LI Peng-yu, et al TBM tunneling parameters prediction based on locally linear embedding and support vector regression[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (8): 1426- 1435
[6]
陈超逸, 鲁娟, 陈楷, 等 车削表面粗糙度解析模型与DDQN-SVR预测模型研究[J]. 机械工程学报, 2021, 57 (13): 262- 272 CHEN Chao-yi, LU Juan, CHEN Kai, et al Research on analytical model and DDQN-SVR prediction model of turning surface roughness[J]. Journal of Mechanical Engineering, 2021, 57 (13): 262- 272
doi: 10.3901/JME.2021.13.262
[7]
巩超光, 胡天亮, 叶瑛歆 基于数字孪生的铣削参数动态多目标优化策略[J]. 计算机集成制造系统, 2021, 27 (2): 478- 486 GONG Chao-guang, HU Tian-liang, YE Ying-xin Dynamic multi-objective optimization strategy of milling parameters based on digital twin[J]. Computer Integrated Manufacturing Systems, 2021, 27 (2): 478- 486
doi: 10.13196/j.cims.2021.02.015
[8]
CHENG Y N, YANG J L, QIN C, et al Tool design and cutting parameter optimization for side milling blisk[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100 (9-12): 2495- 2508
doi: 10.1007/s00170-018-2846-4
[9]
GHOSH T, WANG Y, MARTINSEN K, et al A surrogate-assisted optimization approach for multi-response end milling of aluminum alloy AA3105[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111 (9-10): 2419- 2439
doi: 10.1007/s00170-020-06209-6
[10]
HE K, TANG R, JIN M Pareto fronts of machining parameters for trade-off among energy consumption, cutting force and processing time[J]. International Journal of Production Economics, 2017, 185: 113- 127
doi: 10.1016/j.ijpe.2016.12.012
[11]
OSORIOPINZON J C, ABOLGHASEM S, MARANON A, et al Cutting parameter optimization of Al-6063-O using numerical simulations and particle swarm optimization[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111 (9-10): 2507- 2532
doi: 10.1007/s00170-020-06200-1
[12]
Van H P Application of singularity vibration for minimum energy consumption in high-speed milling[J]. International Journal of Modern Physics B, 2021, 35: 2140008
doi: 10.1142/S0217979221400087
[13]
LI B, TIAN X T, ZHANG M Modeling and multi-objective optimization of cutting parameters in the high-speed milling using RSM and improved TLBO algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111 (7-8): 2323- 2335
doi: 10.1007/s00170-020-06284-9
[14]
翁剑, 庄可佳, 浦栋麟, 等 基于机器学习和多目标算法的钛合金插铣优化[J]. 中国机械工程, 2021, 32 (7): 771- 777 WENG Jian, ZHUANG Ke-jia, PU Dong-lin, et al Plunge milling of tianium alloys based on machine learning and multi-objective optimization[J]. China Mechanical Engineering, 2021, 32 (7): 771- 777
doi: 10.3969/j.issn.1004-132X.2021.07.002
[15]
RUST J Structural estimation of markov decision processes[J]. Handbook of Econometrics, 1994, 3081- 3143
[16]
LI K W, ZHANG T, WANG R Deep reinforcement learning for multi-objective optimization[J]. IEEE Transactions on Cybernetics, 2021, 51 (6): 3103- 3114
doi: 10.1109/TCYB.2020.2977661
[17]
施群, 吕雷, 谢家骏 可变环境下仿人机器人智能姿态控制[J]. 机械工程学报, 2020, 56 (3): 64- 72 SHI Qun, LV Lei, XIE Jia-jun Intelligent posture control of humanoid robot in variable environment[J]. Journal of Mechanical Engineering, 2020, 56 (3): 64- 72
doi: 10.3901/JME.2020.03.064
[18]
LAN S, PANDA R, ZHU Q, et al. FFNet: video fast-forwarding via reinforcement learning [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. USA: Salt Lake City, 2018: 6771-6780.
[19]
MNIH V, KAVUKCUOGLU K, SILVER D, et al Human level control through deep reinforcement learning[J]. Nature, 2015, 518 (7540): 529- 533
doi: 10.1038/nature14236
[20]
WANG Z Y, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning [C]// Proceedings of the 33rd International Conference on Machine Learning. USA: New York, 2016, 46: 1995-2003.
[21]
SUN G L, AYEPAHMENSAH D, XU R, et al End-to-end CNN-based dueling deep Q-Network for autonomous cell activation in Cloud-RANs[J]. Journal of Network and Computer Applications, 2020, 169: 102757
doi: 10.1016/j.jnca.2020.102757
[22]
BAN T W An autonomous transmission scheme using dueling DQN for D2D communication networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (45): 16348- 16352
[23]
ZHANG X W, EHMANN K F, YU T B, et al Cutting forces in micro-end-milling processes[J]. International Journal of Machine Tools and Manufacture, 2016, 107: 21- 40
[24]
HAN F J, LI L, CAI W, et al Parameters optimization considering the trade-off between cutting power and R based on linear decreasing particle swarm algorithm in milling[J]. Journal of Cleaner Production, 2020, 262: 121388
doi: 10.1016/j.jclepro.2020.121388
[25]
MOREIRA L C, LI W D, LU X, et al Energy-efficient machining process analysis and optimization based on BS EN24T alloy steel as case studies[J]. Robotics and Computer-Integrated Manufacturing, 2019, 58: 1- 12
doi: 10.1016/j.rcim.2019.01.011
[26]
SOEPANGKAT B, NORCAHYO R, PRAMUJATI B, et al Multi-objective optimization in face milling process with cryogenic cooling using grey fuzzy analysis and BPNN-GA methods[J]. Engineering Computations, 2020, 36 (5): 1542- 1565
[27]
MNIH V, KAVUKCUOGLU K, SILVER D, et al Playing atari with deep reinforcement learning[J]. Computer Science, 2013, 1- 9
[28]
XU L H, HUANG C Z, LI C W, et al Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining[J]. Journal of Intelligent Manufacturing, 2020, 32 (1): 77- 90
[29]
SUN G L, AYEPAH M D, BUDKEVICH A, et al Autonomous cell activation for energy saving in cloud-RANs based on dueling deep q-network[J]. Knowledge-Based Systems, 2020, 192: 105347
[30]
KUMAR R, BILGA P S, SINGH S Multi-objective optimization using different methods of assigning weights to energy consumption responses, surface roughness and material removal rate during rough turning operation[J]. Journal of Cleaner Production, 2017, 164: 45- 57
doi: 10.1016/j.jclepro.2017.06.077
[31]
SEN B, MIA M, MANDAL U K, et al Multi-objective optimization for MQL-assisted end milling operation: an intelligent hybrid strategy combining GEP and NTOPSIS[J]. Neural Computing and Applications, 2019, 31 (12): 8693- 8717
doi: 10.1007/s00521-019-04450-z
[32]
BEHNAMIAN J, ZANDIEH M, GHOMI S A multi-phase covering pareto-optimal front method to multi-objective parallel machine scheduling[J]. International Journal of Production Research, 2010, 48 (17-18): 4949- 4976
[33]
SUN G L, XIONG K, BOATENG G O, et al Resource slicing and customization in RAN with dueling deep Q-network[J]. Journal of Network and Computer Applications, 2020, 157 (3): 102573