Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (5): 932-939    DOI: 10.3785/j.issn.1008-973X.2019.05.014
    
Relation between sediment mass flux and volume runoff under natural condition of Lancang River
Zhi-lin SUN1(),Zhen-yu CHEN1,Zheng-zhi DENG1,Yu-yu DAI2,Dan XU1
1. Ocean College, Zhejiang University, Hangzhou 310058, China
2. Huadong Engineering Co. Ltd, Hangzhou 311122, China
Download: HTML     PDF(1010KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The relationship between sediment mass flux derivative and volume runoff was developed according to the difference in rangeability of sediment mass flux and volume runoff under natural condition. Based on the measured data of sediment mass concentration and volume runoff of the upriver Jiuzhou station and the middleriver Gajiu station of Lancang River from 1982 to 2000 before the construction of the power station, this work studied the relation between water and sediment in Lancang River and improved the accuracy of using the volume runoff to predict the sediment mass flux. The coefficient of formula comprehensively reflectes the property of the basin system and represents the change rate of sediment mass flux at mean volume runoff. The index of formula reflectes the influence of volume runoff change on the change rate of sediment mass flux. The difference of indexes between upriver and middleriver stations shows that the sediment mass flux not only depends on the upstream sediment, but also on the alongshore erosion and the recharge of tributaries. The theoretical relationship between sediment mass flux and volume runoff is obtained by the integration of derivative formula of sediment mass flux. Results show that the peak of volume runoff appeares one day before the peak of sediment mass flux, based on which the back-propagation neural network (BP-NN) can be optimized. The optimized method can be used to better improve the peak shift phenomenon predicted by the original model and improve the prediction accuracy.



Key wordsLancang River      sediment mass flux      volume runoff      peak asynchrony      back propagation neural network (BP-NN)     
Received: 19 March 2018      Published: 17 May 2019
CLC:  TV 14  
Cite this article:

Zhi-lin SUN,Zhen-yu CHEN,Zheng-zhi DENG,Yu-yu DAI,Dan XU. Relation between sediment mass flux and volume runoff under natural condition of Lancang River. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 932-939.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.05.014     OR     http://www.zjujournals.com/eng/Y2019/V53/I5/932


澜沧江自然条件下输沙质量通量与体积径流量的关系

为了研究澜沧江水沙关系和提高利用体积径流量预测泥沙质量通量的准确性,以电站建设前1982—2000年澜沧江上游旧州站和中游戛旧站沙的质量浓度和体积径流量实测资料为研究对象,根据自然状态下泥沙质量通量和体积径流量变化幅度的差异,建立输沙质量通量导数与体积径流量的关系式. 公式系数为流域系统属性的综合反映,表示平均体积径流量下输沙质量通量的变化率,公式指数表示体积径流量变化对输沙质量通量变化率的影响. 根据上中游站的指数差异可知,泥沙质量通量除依赖上游来沙外还依赖沿程冲刷和支流入汇的补给. 通过对输沙质量通量导数公式进行积分得出输沙质量通量与体积径流量的理论关系. 结果表明,输沙质量通量峰值约落后体积径流量峰值1 d,据此优化反向传播神经网络(BP-NN),可以较好地改良优化前模型预测中的峰值偏移现象,提高预测精度.


关键词: 澜沧江,  输沙质量通量,  体积径流量,  峰值不同步,  反向传播神经网络(BP-NN) 
Fig.1 Sketch map of hydroelectric station on main stream of Lancang River
Fig.2 Daily average volume runoff and daily sediment mass flux at Jiuzhou and Gajiu stations in 1982
洪水 日期 qV/(m3·s?1) ρ/(kg·m?3) Q/(105 t)
第1次 6.28 2 460 1.56 3.31
6.29 2 540 1.40 3.08
6.30 2 890 1.83 4.58
7.1 2 830 2.39 5.84
7.2 2 770 2.01 4.82
第2次 7.22 3 250 1.47 7.21
7.23 3 790 2.35 7.69
7.24 4 230 2.70 9.85
7.25 3 870 3.31 11.06
7.26 3 150 2.49 6.77
第3次 9.17 2 080 0.85 1.53
9.18 2 170 0.89 1.67
9.19 2 360 1.04 2.27
9.20 2 340 1.15 2.34
9.21 2 300 0.94 1.90
Tab.1 Daily average volume runoff, sediment mass concentration, and daily sediment mass flux at Jiuzhou station in 1982
洪水过程 日期 qV/(m3·s?1) ρ/(kg·m?3) Q/(105 t)
第1次 6.29 2 700 2.12 4.95
6.30 3 010 2.12 5.52
7.1 3 220 1.91 5.32
7.2 3 170 2.37 6.49
7.3 3 050 2.22 6.39
第2次 7.23 3 600 2.97 9.24
7.24 4 230 3.04 11.15
7.25 4 390 3.41 12.96
7.26 4 000 3.49 12.1
7.27 3 270 3.21 9.07
第3次 9.18 2 540 1.24 2.72
9.19 2 670 1.45 3.31
9.20 2 770 1.36 3.26
9.21 2 750 1.39 3.34
9.22 2 720 1.3 3.05
Tab.2 Daily average volume runoff, sediment mass concentration, and daily sediment mass flux at Gajiu station in 1982
Fig.3 Relationship between dimensionless derivative of sediment mass flux and volume runoff
Fig.4 Comparison between dimensionless measured and calculated results of sediment mass flux
Fig.5 Comparison between measured and calculated results of dimensionless sediment mass flux at Jiuzhou station
Fig.6 Comparison between measured monthly sediment mass flux at Jiuzhou station in 2000 and predicted values by BP-NN
BP神经网络 R/% NMSE MRE
优化前 50.00 0.076 7 0.472 4
优化后 66.70 0.037 2 0.240 7
Tab.3 Comparison in error between optimized BP-NN and original BP-NN
[1]   胡春宏, 王延贵, 张燕菁, 等 中国江河水沙变化趋势与主要影响因素[J]. 水科学进展, 2010, 21 (4): 524- 532
HU Chun-hong, WANG Yan-gui, ZHANG Yan-qing, et al Variation tendency of runoff and sediment load in China major rivers and its causes[J]. Advances in Water Science, 2010, 21 (4): 524- 532
[2]   刘成, 王兆印, 隋觉义 我国主要入海河流水沙变化分析[J]. 水利学报, 2007, (12): 1444- 1452
LIU Cheng, WANG Zhao-yin, SUI Jue-yi Analysis on variation of seagoing water and sediment load in main rivers of China[J]. Journal of Hydraulic Engineering, 2007, (12): 1444- 1452
doi: 10.3321/j.issn:0559-9350.2007.12.006
[3]   张信宝, 文安邦 长江上游干流和支流河流泥沙近期变化及其原因[J]. 水利学报, 2002, (4): 56- 59
ZHANG Xin-bao, WEN An-bang Variations of sediment in upper stream of Yangtze River and itstributary[J]. Journal of Hydraulic Engineering, 2002, (4): 56- 59
doi: 10.3321/j.issn:0559-9350.2002.04.011
[4]   DAI Z J, FAGHERAZZI S, MEI X F, et al Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) River into the East China Sea between 1956 and 2013[J]. Geomorphology, 2016, (268): 123- 132
[5]   ZHAO G J, MU X M, SU B D, et al Analysis of stream flow and sediment flux changes in the Yangtze River basin[J]. Water International, 2012, 37 (5): 537- 551
doi: 10.1080/02508060.2012.681442
[6]   FAN H M, CAI Q G, GUO C J, et al Temporal and spatial dynamics of different particle size of suspended sediment in the Liu River catchments, China[J]. International Journal of Sediment Research, 2006, (3): 209- 219
[7]   马睿, 马良, 张罗号, 等 黄河流域典型沙质河段冲淤量预估方法及应用[J]. 水利学报, 2016, 47 (10): 1277- 1286
MA Rui, MA Liang, ZHANG Luo-hao, et al Prediction method for erosion and deposition on typical sandy bed sections of the Yellow River and its applications[J]. Journal of Hydraulic Engineering, 2016, 47 (10): 1277- 1286
[8]   FU K D, WANG C, SU B, et al Distribution and pollution assessment of heavy metals in sand sediment of reservoir along the middle and lower reaches of Lancang River[J]. Ecological Economy, 2016, 32 (12): 163- 168
[9]   刘成, 王建军, 何耘 澜沧江-湄公河输沙量变化及其影响因素[J]. 水利水电科技进展, 2013, 33 (1): 7- 12
LIU Cheng, WANG Jian-jun, HE Yun Change in sediment loads in the Lancang-Mekong River and its influencing factors[J]. Advances in Science and Technology of Water Resources, 2013, 33 (1): 7- 12
[10]   周安辉. 澜沧江近20年泥沙变化特性分析[J]. 人民长江, 2012, 43(增1): 114-115.
ZHOU An-hui. Analysis of sediment change characteristics of Lancang River in recent 20 years [J]. Yangtze River, 2012, 43(Suppl. 1): 114-115.
[11]   ZHONG H P, WANG J S Impacts from hydropower development of main stream on runoff of Lancangjiang River[J]. Water Resources and Hydropower Engineering, 2010, 41 (12): 72- 74
[12]   LI H C, WANG G Q, HAO Z C, et al Characteristics analysis of hydrometeorological elements in Lancang River basin[J]. Journal of Water Resources and Water Engineering, 2017, 28 (4): 21- 27
[13]   ZHAI H J, HU B, LUO X Y, et al Spatial and temporal changes in runoff and sediment loads of the Lancang River over the last 50 years[J]. Agricultural Water Management, 2016, (174): 74- 81
[14]   张瑞瑾, 谢鉴衡, 陈文彪. 河流动力学[M]. 武汉: 武汉大学出版社, 2007, 414.
[15]   WARNER J C, GEYER W R, LERCZAK J A Numerical modeling of an estuary: a comprehensive skill assessment[J]. Journal of Geophysical Research, 2005, 110: C05001
[16]   LI B, LI L J, LI H B, et al Changes in precipitation extremes in Lancang River Basin, 1965?2005[J]. Progress in Geography, 2011, 30 (3): 290- 298
[17]   RUMELHART D E, HITON G E, WILLIAMS R J. Parallel distributed processing: explorations in the microstructure of cognition [M]. Cambridge: MIT Press, 1986.
[18]   齐银峰, 谭荣建 基于改进粒子群优化算法的BP神经网络在大坝变形分析中的应用[J]. 水利水电技术, 2017, 48 (2): 118- 124
QI Yin-feng, TAN Rong-jian Application of improved particle swarm optimization algorithm-based BP neural network to dam deformation analysis[J]. Water Resources and Hydropower Engineering, 2017, 48 (2): 118- 124
[19]   赵文喜, 周滨, 刘红磊, 等 基于BP神经网络的海河干流叶绿素浓度短时预测研究[J]. 水利水电技术, 2017, 48 (11): 134- 140
ZHAO Wen-xi, ZHOU Bin, LIU Hong-lei, et al BP neural network-based short-term prediction of chlorophyll concentration in main stream of Haihe River[J]. Water Resources and Hydropower Engineering, 2017, 48 (11): 134- 140
[1] Peng HU,Shao-yi DENG,Zi-xiong ZHAO,Zhi-xian CAO,Huai-han LIU,Zhi-guo HE. Hydro-sediment-morphodynamic modeling of riverbed evolution and calculation of dredging volume[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 733-741.
[2] Zhi-lin SUN,Jia-yun ZHENG,Li-li ZHU,Lin CHONG,Jun LIU,Ju-yuan LUO. Influence of submerged vegetation on flow structure and sediment deposition[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 71-80.
[3] Dao-sheng LING,Qi-xi JIANG,Yu ZHAO. Numerical simulation of entrainment effect of debris flow considering entraining substrate material[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2067-2075.
[4] Peng HU,Jian-jian HAN,Yun-long LEI. Coupled modeling of sediment-laden flows based on local-time-step approach[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 743-752.
[5] KUANG Cui ping, SONG Hong lin, GU Jie, MA Zhen. Three-dimensional characteristics of wind-induced current and turbulence at Huanghua Harbor[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 38-45.
[6] GUO Cong, SUN Zhi lin, ZHENG Hao lei, PAN Gui e. Response of estuarine erosion and deposition to reclamation in estuary[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1791-1797.
[7] ZHANG Xiao lei, XIA Jun qiang, DENG Shan shan, WANG Zeng hui. Effect of different cross sectional spacing on simulation results of hyperconcentrated floods in Lower Yellow River[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 735-743.
[8] ZHANG Wen jun, SUN Hong yue, PAN Pan, WEI Zhen lei.

Analysis on self dredging capability of siphon drainage pool in debris flow[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2159-2164.

[9] SUN Zhi-lin, NI Xiao-jing, XU Dan, NIE Hui. Some problems on mathematical model of sediment transport in Estuary[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 232-237.
[10] XIA Jun-qiang, ZONG Quan-li, DENG Shan-shan, XU Quan-xi, ZHANG Yi. Adjustments in reach-scale bankfull channel geometry of Jingjiang reach after operation of Three Gorges Project[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 238-245.
[11] FAN Nian-nian, WU Bao-sheng. Anomalous diffusion of non-uniform bed load particles based on a stochastic-mechanic model[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 246-250.
[12] HU De-chao, CHI Long-zhe, YANG Qiong, WANG Min. Development mechanics of scouring funnel before dam of reservoir[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 257-264.
[13] SUN Zhi-lin, YANG Zhong-tao, GAO Yun, XU Dan, HU Shi-xiang. Hydraulic geometry of branching channels in Yangtze estuary[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2266-2270.
[14] ZHOU Jian-yin, SHAO Xue-jun, JIANG Lei, JIA Dong-dong. Gravity-driven transport of fine grained reservoir sediments[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2254-2258.
[15] CHEN Yi-fan, CHENG Wei-ping, JIANG Jian-qun. A robust river roughness calibration model[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1361-1365.