Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (2): 313-321    DOI: 10.3785/j.issn.1008-973X.2022.02.012
    
A join query optimization algorithm in multi-blockchain environment
Si-han DONG1(),Jun-chang XIN2,3,*(),Kun HAO1,4,Zhong-ming YAO2,Jin-yi CHEN2
1. College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China
2. College of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
3. Key Laboratory of Big Data Management and Analytics ( Liaoning Province) , Shenyang 110819, China)
4. Neusoft Corporation Research Center of Liaoning Promotion for Blockchain Engineering Technology, Shenyang 110819, China
Download: HTML     PDF(929KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A join query optimization algorithm in a multiple blockchain environment was proposed, in order to improve the efficiency of join query processing on multi-blockchain. In this method, semantic information is added to the traditional multi-blockchain model, and a semantic multi-blockchain model is constructed to provide a basis for join query on multi-blockchain. Based on this model, referring to the index structure of the distributed database, a join index structure was proposed, which realizes attribute connection of multiple blockchains, improves the efficiency of connection calculation, and reduces the communication cost of data transmission. On these basis, a optimization algorithm about multi-blockchain join query was proposed to improve the efficiency of multi-blockchain connection query. The empirical study of the proposed method was conducted on two real public data sets. Results show that the connection index structure between multiple blockchains is stable. Compared with the traditional join query operation, multiple blockchain connection query optimization method simplifies the query processing process. Query results can be directly obtained by accessing the join index, which reduces local computing load and network overhead, and improves query efficiency.



Key wordsmulti-blockchain      semantic multi-blockchain model      multi-blockchain join index      multi-blockchain join query      blockchain query     
Received: 14 July 2021      Published: 03 March 2022
CLC:  TP 301  
Corresponding Authors: Jun-chang XIN     E-mail: dongsihan@stumail.neu.edu.cn;xinjunchang@mail.neu.edu.cn
Cite this article:

Si-han DONG,Jun-chang XIN,Kun HAO,Zhong-ming YAO,Jin-yi CHEN. A join query optimization algorithm in multi-blockchain environment. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 313-321.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.02.012     OR     https://www.zjujournals.com/eng/Y2022/V56/I2/313


多区块链环境下的连接查询优化算法

为了提高多区块链间的连接查询处理效率,提出多区块链环境下的连接查询优化算法. 该方法在传统的多区块链模型中增加语义信息,构建语义多区块链模型,为多区块链间的连接查询提供基础. 基于该模型,参考分布式数据库的索引结构,提出多区块链间的连接索引结构,将多条区块链进行属性连接,提高连接计算的效率,减少数据传输的通信代价. 在此基础上,提出多链连接查询优化算法,提升多区块链连接查询的效率. 最后,在2个真实公开的数据集上进行实验. 结果表明,多区块链间的连接索引结构稳定;与传统的直接进行连接查询的操作相比,多区块链连接查询优化方法简化了查询处理过程,通过访问连接索引直接获取查询结果,减少了本地计算负载和网络开销,提高了查询效率.


关键词: 多区块链,  语义多区块链模型,  多链连接索引,  多链连接查询,  区块链查询 
Fig.1 Schematic diagram of multi-blockchain model
Fig.2 Semantic block structure
Fig.3 Structure of S-Inverted Index
Fig.4 Structure of S-Bitmap and S-B+-tree index
attr t1/ms t2/ms
1 4929 4791
2 4658 4624
3 4656 4944
4 4646 4713
5 4660 4710
6 4638 4751
7 4628 4764
8 4687 4863
Tab.1 Time for index building
Fig.5 Time changes of index construction with different block numbers
Fig.6 Time changes of index construction with different number of chains
Fig.7 Time changes of join query with different result sets in D1
Fig.8 Time changes of join query with different result sets in D2
Fig.9 Time changes of join query with different number of chains in D1
[1]   NAKAMOTO S Bitcoin: a peer-to-peer electronic cash system[J]. Decentralized Business Review, 2008, 21260
[2]   WOOD G Ethereum: a secure decentralised generalised transaction ledger[J]. Ethereum Project Yellow Paper, 2014, 151: 1- 32
[3]   ISTI S, HARMAN Y, ENRICO L, et al Designing a permissioned blockchain network for the Halal industry using hyperledger fabric with multiple channels and the raft consensus mechanism[J]. Journal of Big Data, 2021, 8 (1): 1- 16
doi: 10.1186/s40537-020-00387-6
[4]   RUAN P, CHEN G, DINH T T A, et al Fine-grained, secure and efficient data provenance on blockchain systems[J]. Proceedings of the VLDB Endowment, 2019, 12 (9): 975- 988
doi: 10.14778/3329772.3329775
[5]   QIAO R, LUO X Y, ZHU S F, et al Dynamic autonomous cross consortium chain mechanism in e-Healthcare[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24 (8): 2157- 2168
doi: 10.1109/JBHI.2019.2963437
[6]   AMIRI M J, AGRAWAL D, ABBADI A E Caper: a cross-application permissioned blockchain[J]. Proceedings of the VLDB Endowment, 2019, 12 (11): 1385- 1398
doi: 10.14778/3342263.3342275
[7]   LI D, LIU W, DENG L, et al Design of multimedia blockchain privacy protection system based on distributed trusted communication[J]. Transactions on Emerging Telecommunications Technologies, 2021, 32 (2): e3938
[8]   ZHOU J, TANG F, ZHU H, et al. Distributed data vending on blockchain [C]// 2018 IEEE International Conference on Internet of Things and IEEE Green Computing and Communications and IEEE Cyber, Physical and Social Computing and IEEE Smart Data. Halifax: IEEE, 2018: 1100-1107.
[9]   王千阁, 何蒲, 聂铁铮, 等 区块链系统的数据存储与查询技术综述[J]. 计算机科学, 2018, 45 (12): 12- 18
WANG Qian-ge, HE Pu, NIE Tie-zheng, et al Survey of data storage and query techniques in Blockchain systems[J]. Computer Science, 2018, 45 (12): 12- 18
[10]   MUZAMMAL M, QU Q, NASRULIN B Renovating blockchain with distributed databases: an open source system[J]. Future Generation Computer Systems, 2019, 90: 105- 117
doi: 10.1016/j.future.2018.07.042
[11]   LI Y, ZHENG K, YAN Y, et al. EtherQL: a query layer for blockchain system [C]// International Conference on Database Systems for Advanced Applications. Suzhou: Springer, 2017: 556-567.
[12]   RAIKWAR M, GLIGOROSKI D, VELINOV G. Trends in development of databases and blockchain [C]// 2020 7th International Conference on Software Defined Systems. [S.l.]: IEEE, 2020: 177-182.
[13]   ZHU Y, ZHANG Z, JIN C, et al. Sebdb: semantics empowered blockchain database [C]// 2019 IEEE 35th International Conference on Data Engineering. Macau: IEEE, 2019: 1820-1831.
[14]   DINH T T A, DATTA A, OOI B C. A blueprint for interoperable blockchains [EB/OL]. (2019-10-22). https://arxiv.org/abs/1910.00985.
[15]   李芳, 李卓然, 赵赫 区块链跨链技术进展研究[J]. 软件学报, 2019, 6: 1649- 1660
LI Fang, LI Zhuo-ran, ZHAO He Research on the progress in cross-chain technology of blockchains[J]. Journal of Software, 2019, 6: 1649- 1660
[16]   ZAKHARY V, AGRAWAL D, ABBADI A E. Atomic commitment across blockchains [EB/OL]. (2019-06-18). https://xueshu.baidu.com/usercenter/paper/show?paperid=1n5p04y0k4690te01p5q04902d261734&site=xueshu_se&hitarticle=1.
[17]   JIANMO N. Amazon review data (2018) [DB/OL]. [2021-06-01]. https://nijianmo.github.io/amazon/index.html.
[1] Xiao-bo CHEN,Ling CHEN,Shu-rong LIANG,Yu HU. Robust cooperative target tracking under heavy-tailed non-Gaussian localization noise[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 967-976.
[2] Xiao-xin DU,Hao WANG,Lian-he CUI,Jin-qi LUO,Yan LIU,Jian-fei ZHANG,Yi-ping WANG. Dragonfly algorithm based on clustering and detection elite guidance[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 977-986.
[3] Wan-liang WANG,Ya-wen JIN,Jia-cheng CHEN,Guo-qing LI,Ming-zhi HU,Jian-hang DONG. Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 531-541.
[4] Guo-wen XIONG,Min ZHANG,Wen-xin XU. Vehicle routing optimization of two-echelon opening and closing hybrid based on crowdsourcing mode[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2397-2408.
[5] Jing-li WU,Guo-dong YI,Le-miao QIU,Shu-you ZHANG. Path planning of mobile robots in mixed obstacle space with high temperature[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1806-1814.
[6] Ze-qiang ZHANG,Pei-yu XU,Jin JIANG,Yu ZHANG. Optimization of parallel disassembly line balancing problem with different operators between workstations[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1795-1805.
[7] Jian-sha LU,Wen-qian ZHAI,Jia-feng LI,Wen-chao YI,Hong-tao TANG. Multi-constrained vehicle routing optimization based on improved hybrid shuffled frog leaping algorithm[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 259-270.
[8] Song CHENG,Zong-feng ZOU. Optimization and experiment of heliostat surface shape bracing structure based on plane truss[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2310-2320.
[9] Jun-zhong JI,Xiao-ni SONG,Cui-cui YANG. Feature reduction of neighborhood rough set based on fish swarm algorithm in brain functional connectivity[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2247-2257.
[10] Xiao-feng FU,Li NIU,Zhuo-qun HU,Jian-jun LI,Qing WU. Deep micro-expression spotting network training based on concept of transition frame[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2128-2137.
[11] Qi WU,Xiao-hong HUANG,Yan MA,Qun CONG. A template extraction method for composite log[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1557-1561.
[12] Ge-hui LIU,Shao-kuan CHEN,Hua JIN,Shuang LIU,Hong-qin PENG. Optimum imperfect inspection and maintenance scheduling model considering delay time theory[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1298-1307.
[13] Chao-jun ZHOU,Ming-hui HUANG,Xin-jiang LU. Modeling for distributed parameter systems based on low-dimensional constrained embedding[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2154-2162.
[14] Jia-hao XU,Jun-zhong JI,Cui-cui YANG. Functional modules detection based on bat algorithm in protein-protein interaction networks[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1618-1629.
[15] Li-yan DONG,Jia-huan JIN,Yuan-cheng FANG,Yue-qun WANG,Yong-li LI,Ming-hui SUN. Slope One algorithm based on nonnegative matrix factorization[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1349-1353.