Chemical Engineering, Biological Engineering |
|
|
|
|
Functional modules detection based on bat algorithm in protein-protein interaction networks |
Jia-hao XU( ),Jun-zhong JI*( ),Cui-cui YANG |
Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing 100124, China |
|
|
Abstract The bat algorithm was used to detect the functional modules in protein-protein interaction networks (PPINs), in order to get better protein functional modules and reveal the function of proteins. The position of each bat individual represents a candidate functional module partition. Each protein node in PPIN and all its neighbor nodes form an ordered adjacency list and the population is initialized by random walk coding method in the ordered adjacency list. Four kinds of optimization mechanisms, namely directional local disturbance, random disturbance, adaptive variation based on distance and frequency, natural selection, are designed for the random optimization of solutions in the process of population optimization. The comparison experiments of the proposed algorithm and six classical algorithms were conducted on five yeast PPIN datasets having different scales. Results showed that many functional modules detected by the proposed method matched the standard modules and the evaluation indexes including coverage, recall, sensitivity, positive predictive value and accuracy were outstanding, which verified the validity of the proposed method.
|
Received: 11 July 2018
Published: 13 August 2019
|
|
Corresponding Authors:
Jun-zhong JI
E-mail: xjh8239@163.com;jjz01@bjut.edu.cn
|
基于蝙蝠算法的蛋白质网络功能模块检测
为了得到更好的蛋白质功能模块,揭示蛋白质的功能,利用蝙蝠算法对蛋白质相互作用网络(PPINs)进行功能模块检测. 每个蝙蝠个体所在的位置代表一种候选的功能模块划分,将PPIN中每个蛋白质节点与其所有邻居节点组成邻居有序表,采用在邻居有序表中随机游走的编码方式进行种群的初始化;在种群优化过程中,设计定向局部扰动、随机扰动、基于距离和频率的自适应变异、自然选择4种寻优机制来进行解的随机优化. 在5个不同规模的酵母菌PPIN数据集上,将所提出方法与6种经典算法进行对比实验. 结果表明,所提出方法检测到的功能模块中有较多模块与标准模块相匹配,并且所提出算法在覆盖率、召回率、灵敏度、正的预测率、准确度评价指标上均表现突出,验证了所提出方法的有效性.
关键词:
蛋白质相互作用网络(PPIN),
功能模块检测,
蝙蝠算法,
扰动,
自适应变异,
自然选择
|
|
[1] |
UHLéN M, FAGERBERG L, HALLSTR?M B M, et al Tissue-based map of the human proteome[J]. Science, 2015, 347 (6220): 1260419
doi: 10.1126/science.1260419
|
|
|
[2] |
AKOADJEI D, FU W, WALLIN C, et al HIV-1, human interaction database: current status and new features[J]. Nucleic Acids Research, 2015, 43 (D1): 566- 570
doi: 10.1093/nar/gku1126
|
|
|
[3] |
LUO J W, LI C A novel method to predict protein complexes based on Gene Ontology in PPI networks[J]. Journal of Computational Information Systems, 2013, 9 (12): 5031- 5039
|
|
|
[4] |
JI J Z, ZHANG A D, LIU C N, et al Survey: functional module detection from protein-protein interaction networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26 (2): 261- 277
doi: 10.1109/TKDE.2012.225
|
|
|
[5] |
李敏, 孟祥茂 动态蛋白质网络的构建、分析及应用研究进展[J]. 计算机研究与发展, 2017, 54 (6): 1281- 1299 LI Min, MENG Xiang-mao The construction, analysis, and applications of dynamic protein-protein interaction networks[J]. Journal of Computer Research and Development, 2017, 54 (6): 1281- 1299
doi: 10.7544/issn1000-1239.2017.20160902
|
|
|
[6] |
冀俊忠, 刘志军, 刘红欣, 等 蛋白质相互作用网络功能模块检测的研究综述[J]. 自动化学报, 2014, 40 (4): 577- 593 JI Jun-zhong, LIU Zhi-jun, LIU Hong-xin, et al An overview of research on functional module detection for protein-protein interaction networks[J]. Acta Automatica Sinica, 2014, 40 (4): 577- 593
|
|
|
[7] |
WU M, LI X L, KWOH C K, et al A core-attachment based method to detect protein complexes in PPI networks[J]. BMC Bioinformatics, 2009, 10 (1): 169- 178
doi: 10.1186/1471-2105-10-169
|
|
|
[8] |
ALDECOA R, MARIN I Jerarca: efficient analysis of complex networks using hierarchical clustering[J]. Plos One, 2010, 5 (7): e11585
doi: 10.1371/journal.pone.0011585
|
|
|
[9] |
NEPUSZ T, YU H, PACCANARO A Detecting overlapping protein complexes in protein-protein interaction networks[J]. Nature Methods, 2012, 9 (5): 471- 472
doi: 10.1038/nmeth.1938
|
|
|
[10] |
LIU Q Z, SONG J N, LI J Y Using contrast patterns between true complexes and random subgraphs in PPI networks to predict unknown protein complexes[J]. Scientific Reports, 2016, 6: 21223
doi: 10.1038/srep21223
|
|
|
[11] |
JI J Z, LIU Z J, ZHANG A D, et al. Improved ant colony optimization for detecting functional modules in protein-protein interaction networks [C]// International Conference on Information Computing and Applications. Berlin: Springer, 2012: 404-413.
|
|
|
[12] |
JI J Z, LV J W, YANG C C, et al Detecting functional modules based on a multiple-grain model in large-scale protein-protein interaction networks[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 13 (4): 610- 622
|
|
|
[13] |
YANG C C, JI J Z, ZHANG A D BFO-FMD: bacterial foraging optimization for functional module detection in protein-protein interaction networks[J]. Soft Computing, 2018, 22 (10): 3395- 3416
doi: 10.1007/s00500-017-2584-9
|
|
|
[14] |
马杰, 沈钧贤, 赵辉华, 等 回声定位蝙蝠及其声通讯[J]. 动物学杂志, 2002, 37 (6): 79- 82 MA Jie, SHEN Jun-xian, ZHAO Hui-hua, et al Echolocation and acoustic communication in bats[J]. Chinese Journal of Zoology, 2002, 37 (6): 79- 82
doi: 10.3969/j.issn.0250-3263.2002.06.021
|
|
|
[15] |
YANG X S A new metaheuristic bat-inspired algorithm[J]. Computer Knowledge and Technology, 2010, 284: 65- 74
|
|
|
[16] |
JAYABARATHI T, RAGHUNATHAN T, GANDOMI A H The bat algorithm, variants and some practical engineering applications: a review[J]. Studies in Computational Intelligence, 2018, 744: 313- 330
|
|
|
[17] |
THARAKESHWAR T K, SEETHARAMU K N, PRASAD B D Multi-objective optimization using bat algorithm for shell and tube heat exchangers[J]. Applied Thermal Engineering, 2017, 110: 1029- 1038
doi: 10.1016/j.applthermaleng.2016.09.031
|
|
|
[18] |
JENSI R, WISELIN J G MBA-LF: a new data clustering method using modified bat algorithm and levy flight[J]. ICTACT Journal on Soft Computing, 2015, 6 (1): 1093- 1101
doi: 10.21917/ijsc
|
|
|
[19] |
CHENG C Y, BAO C H. A kernelized fuzzy c-means clustering algorithm based on bat algorithm [C]// International Conference on Computer and Automation Engineering. Brisbane: ACM, 2018: 1-5.
|
|
|
[20] |
JADDI N S, ABDULLAH S, HAMDAN A R Multi-population cooperative bat algorithm-based optimization of artificial neural network model[J]. Information Sciences, 2015, 294: 628- 644
doi: 10.1016/j.ins.2014.08.050
|
|
|
[21] |
LU S, QIU X, SHI J, et al A pathological brain detection system based on extreme learning machine optimized by bat algorithm[J]. CNS and Neurological Disorders-Drug Targets, 2017, 16 (1): 23- 29
doi: 10.2174/1871527315666161019153259
|
|
|
[22] |
CHEN Z M, BO Y M, TIAN M C, et al Dynamic perceptive bat algorithm used to optimize particle filter for tracking multiple targets[J]. Journal of Aerospace Engineering, 2018, 31 (3): 04018015
doi: 10.1061/(ASCE)AS.1943-5525.0000834
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|