Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (10): 2221-2228    DOI: 10.3785/j.issn.1008-973X.2025.10.023
    
Quantitative prediction of soil heavy metal nickel content based on multi-channel convolution method
Chengbiao FU1(),Qingyuan ZHUANG1,Anhong TIAN2,1,*()
1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China
2. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
Download: HTML     PDF(6237KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to capture the complex non-linear relationships in soil spectra, a spectral multi-channel convolution method based on convolutional neural networks was proposed, and the soil heavy metal nickel content was predicted. One hundred and twenty-two soil spectral samples were collected from polluted agricultural soils in an area. The Kennard-Stone algorithm was used to divide the samples into calibration sets and verification sets. The Savitzky-Golay smoothing and the standard normal transformation were used to preprocess the original soil spectral data, and an improved correlation coefficient method ($ p $=0.01) was used to extract 296 characteristic bands. Four deep learning methods, including ResNet, VGG, Inception, and MobileNet, were employed to predict the content of heavy metal nickel under different channel strategies: single-channel (MTF), dual-channel (MTF-GASF), and multi-channel (MC). Without increasing the model complexity, a method was proposed to enhance the prediction accuracy of the lightweight model MC-MobileNet for soil nickel content. In order to comprehensively evaluate the prediction performance of different models, three indicators, including determination coefficient, root mean square error and relative predictive deviation, were used for evaluation. Results showed that the prediction performance of all models was improved after using the multi-channel convolution method, the model overfitting scenario was mitigated, and the models under the multi-channel strategy exhibited a relative predictive deviation greater than 2.5.



Key wordsconvolutional neural network      visible and near-infrared spectroscopy      nickel content in soil      multi-channel modeling      deep learning     
Received: 31 August 2024      Published: 27 October 2025
CLC:  P 237  
Fund:  国家自然科学基金资助项目(42361007,42067029);云南省科技厅项目(202205AC160005);云南省“兴滇英才支持计划”青年人才项目(KKXX202303001).
Corresponding Authors: Anhong TIAN     E-mail: fcb@kust.edu.cn;tah@kust.edu.cn
Cite this article:

Chengbiao FU,Qingyuan ZHUANG,Anhong TIAN. Quantitative prediction of soil heavy metal nickel content based on multi-channel convolution method. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2221-2228.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.10.023     OR     https://www.zjujournals.com/eng/Y2025/V59/I10/2221


基于多通道卷积方式的土壤重金属镍含量定量预测

为了捕捉土壤光谱中复杂的非线性关系,提出基于卷积神经网络的光谱多通道卷积方法,进行土壤重金属镍含量预测. 以某污染农田土壤为研究对象,采集122个土壤光谱样本,利用Kennard-Stone算法将样本划分为校准集和验证集. 采用Savitzky-Golay平滑与标准正态变换进行原始土壤光谱数据预处理,使用改进的相关系数法($ p $=0.01)提取296个特征波段. 采用包括ResNet、VGG、Inception和MobileNet在内的4种深度学习方法进行不同通道策略(单通道(MTF)、双通道(MTF-GASF)、多通道(MC))下的重金属镍含量预测. 在不增加模型复杂度的情况下,提出用于提升轻量化模型MC-MobileNet预测土壤镍含量精度的方法. 以决定系数、均方根误差和相对预测偏差为评估指标,进行不同模型的预测性能综合评估. 结果表明,使用多通道卷积方法后,所有模型的预测性能均有提升,模型过拟合情形得到缓解,模型相对预测偏差均大于2.5.


关键词: 卷积神经网络,  可见近红外光谱,  土壤镍含量,  多通道建模,  深度学习 
Fig.1 Study area
Fig.2 Error band of soil spectral reflectance
Fig.3 Training flowchart of each model under different channel input strategies
数据集ndwNi/10?6Cv/%
最小值最大值平均值标准差
全部12220.11051315.89304.5796.42
校准9020.11051270.66293.92108.59
验证3224.6935443.11297.9067.23
Tab.1 Statistical analysis of parameters for nickel content in soil heavy metal samples dataset
Fig.4 Spectral band selection results based on improved correlation coefficient method
Fig.5 Channel mapping results under different strategies after spectral band selection
模型$ {{R}}_{\mathrm{c}}^{2} $$ {\mathrm{R}\mathrm{M}\mathrm{S}\mathrm{E}}_{\mathrm{c}} $$ {\mathrm{R}\mathrm{P}\mathrm{D}}_{\mathrm{c}} $$ {{R}}_{\mathrm{v}}^{2} $$ {\mathrm{R}\mathrm{M}\mathrm{S}\mathrm{E}}_{\mathrm{v}} $$ {\mathrm{R}\mathrm{P}\mathrm{D}}_{\mathrm{v}} $
MTF-ResNet0.96738.0779.5250.853114.3872.604
MTF-VGG0.93072.0664.4530.796134.7182.211
MTF-Inception0.99223.28413.7080.814128.4702.319
MTF-MobileNet0.92176.0004.1230.770143.0222.083
MTF-GASF-ResNet0.87795.5934.0540.872106.3792.800
MTF-GASF-VGG0.86687.3133.8030.839119.7182.488
MTF-GASF-Inception0.91953.5047.5210.833121.7772.446
MTF-GASF-MobileNet0.95254.5716.3540.799133.5302.231
MC-ResNet0.92077.8504.6810.90193.5733.184
MC-VGG0.90973.9144.8880.850115.2642.585
MC-Inception0.91974.9524.2210.854113.7732.618
MC-MobileNet0.94261.4965.0960.844117.8412.528
Tab.2 Comparative analysis of deep learning model prediction performance under different strategies
Fig.6 Scatter plots of soil nickel content predicted by four deep learning models under multi-channel strategy
模型$ {N}_{\mathrm{p}}/{10}^{6} $$ {F}_{\mathrm{r}}/{10}^{6} $$ {t}_{\mathrm{i}}/{\mathrm{s}} $
ResNet11.1858 355.920.190 3
VGG14.72491 096.231.426 1
Inception21.7690 756.260.846 9
MobileNet0.571 370.960.112 6
ResMobileNet0.571 370.960.109 5
Tab.3 Parameter statistics of different deep learning models under multi-channel strategy
Fig.7 Model architecture diagram combining two deep learning networks
Fig.8 Scatter plot of soil nickel content predicted by combined model
[1]   PANAGOPOULOS I, KARAYANNIS A, KOLLIAS K, et al Investigation of potential soil contamination with Cr and Ni in four metal finishing facilities at Asopos industrial area[J]. Journal of Hazardous Materials, 2015, 281: 20- 26
doi: 10.1016/j.jhazmat.2014.07.040
[2]   KHAN M Y A, GANI K M, CHAKRAPANI G J Spatial and temporal variations of physicochemical and heavy metal pollution in Ramganga River—a tributary of River Ganges, India[J]. Environmental Earth Sciences, 2017, 76 (5): 231
doi: 10.1007/s12665-017-6547-3
[3]   KUMAR A, JIGYASU D K, SUBRAHMANYAM G, et al Nickel in terrestrial biota: comprehensive review on contamination, toxicity, tolerance and its remediation approaches[J]. Chemosphere, 2021, 275: 129996
doi: 10.1016/j.chemosphere.2021.129996
[4]   HERRERO M, ROVIRA J, NADAL M, et al Risk assessment due to dermal exposure of trace elements and indigo dye in jeans: migration to artificial sweat[J]. Environmental Research, 2019, 172: 310- 318
doi: 10.1016/j.envres.2019.02.030
[5]   KHAN M A, WEN J Evaluation of physicochemical and heavy metals characteristics in surface water under anthropogenic activities using multivariate statistical methods, Garra River, Ganges Basin, India[J]. Environmental Engineering Research, 2021, 26 (6): 200280
[6]   LI J, HU H W, MA Y B, et al Long-term nickel exposure altered the bacterial community composition but not diversity in two contrasting agricultural soils[J]. Environmental Science Pollution Research, 2015, 22: 10496- 10505
doi: 10.1007/s11356-015-4232-1
[7]   SHAHZAD B, TANVEER M, REHMAN A, et al Nickel; whether toxic or essential for plants and environment: a review[J]. Plant Physiology Biochemistry, 2018, 132: 641- 651
doi: 10.1016/j.plaphy.2018.10.014
[8]   RENU K, CHAKRABORTY R, MYAKALA H, et al Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, nickel and cadmium)-induced hepatotoxicity: a review[J]. Chemosphere, 2021, 271: 129735
doi: 10.1016/j.chemosphere.2021.129735
[9]   GUPTA N, YADAV K K, KUMAR V, et al Evaluating heavy metals contamination in soil and vegetables in the region of North India: levels, transfer and potential human health risk analysis[J]. Environmental Toxicology Pharmacology, 2021, 82: 103563
doi: 10.1016/j.etap.2020.103563
[10]   EL-NAGGAR A, AHMED N, MOSA A, et al Nickel in soil and water: sources, biogeochemistry, and remediation using biochar[J]. Journal of Hazardous Materials, 2021, 419: 126421
doi: 10.1016/j.jhazmat.2021.126421
[11]   PYO J, HONG S M, KWON Y S, et al Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil[J]. Science of the Total Environment, 2020, 741: 140162
doi: 10.1016/j.scitotenv.2020.140162
[12]   SHEN Q, XIA K, ZHANG S, et al Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area[J]. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2019, 222: 117191
doi: 10.1016/j.saa.2019.117191
[13]   PALTSEVA A A, DEEB M, DI IORIO E, et al Prediction of bioaccessible lead in urban and suburban soils with Vis-NIR diffuse reflectance spectroscopy[J]. Science of The Total Environment, 2022, 809: 151107
doi: 10.1016/j.scitotenv.2021.151107
[14]   SUN W, LIU S, ZHANG X, et al Performance of hyperspectral data in predicting and mapping zinc concentration in soil[J]. Science of the Total Environment, 2022, 824: 153766
doi: 10.1016/j.scitotenv.2022.153766
[15]   SUN Y, CHEN S, DAI X, et al Coupled retrieval of heavy metal nickel concentration in agricultural soil from spaceborne hyperspectral imagery[J]. Journal of Hazardous Materials, 2023, 446: 130722
doi: 10.1016/j.jhazmat.2023.130722
[16]   WANG Y, ZOU B, LI S, et al A hierarchical residual correction-based hyperspectral inversion method for soil heavy metals considering spatial heterogeneity[J]. Journal of Hazardous Materials, 2024, 479: 135699
doi: 10.1016/j.jhazmat.2024.135699
[17]   TAN K, WANG H, CHEN L, et al Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest[J]. Journal of Hazardous Materials, 2020, 382: 120987
doi: 10.1016/j.jhazmat.2019.120987
[18]   ZOU Z, WANG Q, WU Q, et al Inversion of heavy metal content in soil using hyperspectral characteristic bands-based machine learning method[J]. Journal of Environmental Management, 2024, 355: 120503
doi: 10.1016/j.jenvman.2024.120503
[19]   WANG Y, ZHANG X, SUN W, et al Effects of hyperspectral data with different spectral resolutions on the estimation of soil heavy metal content: from ground-based and airborne data to satellite-simulated data[J]. Science of the Total Environment, 2022, 838: 156129
doi: 10.1016/j.scitotenv.2022.156129
[20]   LIU J, HAN J, XIE J, et al Assessing heavy metal concentrations in earth-cumulic-orthic-anthrosols soils using Vis-NIR spectroscopy transform coupled with chemometrics[J]. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2020, 226: 117639
doi: 10.1016/j.saa.2019.117639
[21]   WANG X, ZHAO C, LI Z, et al Modeling risk assessment of soil heavy metal pollution using partial least squares and fuzzy logic: a case study of a gully type coal-based solid waste dumpsite[J]. Environmental Pollution, 2024, 352: 124147
doi: 10.1016/j.envpol.2024.124147
[22]   ARIF M, QI Y, DONG Z, et al Rapid retrieval of cadmium and lead content from urban greenbelt zones using hyperspectral characteristic bands[J]. Journal of Cleaner Production, 2022, 374: 133922
doi: 10.1016/j.jclepro.2022.133922
[23]   ZHENG X, ZHENG P, ZHENG L, et al Multi-channel convolutional neural networks for materials properties prediction[J]. Computational Materials Science, 2020, 173: 109436
doi: 10.1016/j.commatsci.2019.109436
[24]   TSAKIRIDIS N L, KERAMARIS K D, THEOCHARIS J B, et al Simultaneous prediction of soil properties from VNIR-SWIR spectra using a localized multi-channel 1-D convolutional neural network[J]. Geoderma, 2020, 367: 114208
doi: 10.1016/j.geoderma.2020.114208
[25]   张东, 塔西甫拉提·特依拜, 张飞, 等 分数阶微分在盐渍土高光谱数据预处理中的应用[J]. 农业工程学报, 2014, 30 (24): 151- 160
ZHANG Dong, TASHPOLAT·Tiyip, ZHANG Fei, et al Application of fractional differential in preprocessing hyperspectral data of saline soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30 (24): 151- 160
doi: 10.3969/j.issn.1002-6819.2014.24.018
[26]   王敬哲, 塔西甫拉提·特依拜, 张东 基于分数阶微分的荒漠土壤铬含量高光谱检测[J]. 农业机械学报, 2017, 48 (5): 152- 158
WANG Jingzhe, TASHPOLAT·Tiyip, ZHANG Dong Spectral detection of chromium content in desert soil based on fractional differential[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48 (5): 152- 158
doi: 10.6041/j.issn.1000-1298.2017.05.018
[27]   TIECHER T, MOURA-BUENO J M, CANER L, et al Improving the quantification of sediment source contributions using different mathematical models and spectral preprocessing techniques for individual or combined spectra of ultraviolet–visible, near- and middle-infrared spectroscopy[J]. Geoderma, 2021, 384: 114815
doi: 10.1016/j.geoderma.2020.114815
[28]   BA Y, LIU J, HAN J, et al Application of Vis-NIR spectroscopy for determination the content of organic matter in saline-alkali soils[J]. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2020, 229: 117863
doi: 10.1016/j.saa.2019.117863
[29]   JI R, ZHAO Y, LI M, et al Research on prediction model of soil nitrogen content based on encoder-CNN[J]. Spectroscopy and Spectral Analysis, 2022, 42 (5): 1372- 1377
[30]   SABETIZADE M, GORJI M, ROUDIER P, et al Combination of MIR spectroscopy and environmental covariates to predict soil organic carbon in a semi-arid region[J]. CATENA, 2021, 196: 104844
doi: 10.1016/j.catena.2020.104844
[31]   SUN C, XUE Z, ZHANG L, et al Local peak Savitzky-Golay for spatio-temporal reconstruction of Landsat NDVI time series: a case study over the Qinghai-Tibet Plateau[J]. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 2024, 17: 13439- 13455
doi: 10.1109/JSTARS.2024.3432797
[32]   TAVAKOLI H, CORREA J, SABETIZADE M, et al Predicting key soil properties from Vis-NIR spectra by applying dual-wavelength indices transformations and stacking machine learning approaches[J]. Soil Tillage Research, 2023, 229: 105684
doi: 10.1016/j.still.2023.105684
[33]   WANG Z, OATES T. Encoding time series as images for visual inspection and classification using tiled convolutional neural networks [C]// AAAI Workshop Papers 2015. [S.l.]: AAAI, 2015: 40–46.
[34]   WAN M, YAN T, XU G, et al MAE-NIR: a masked autoencoder that enhances near-infrared spectral data to predict soil properties[J]. Computers Electronics in Agriculture, 2023, 215: 108427
doi: 10.1016/j.compag.2023.108427
[35]   LI Y, CHEN Z, ZHANG F, et al Research on detection of potato varieties based on spectral imaging analytical algorithm[J]. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2024, 311: 123966
doi: 10.1016/j.saa.2024.123966
[36]   LI Y, SUN H, ZHENG Y, et al Combined gramian angular difference field image coding and improved mobile vision transformer for determination of apple soluble solids content by Vis-NIR spectroscopy[J]. Journal of Food Composition Analysis, 2024, 131: 106200
doi: 10.1016/j.jfca.2024.106200
[37]   CHEN X, LIU H, LI J, et al A geographical traceability method for Lanmaoa asiatica mushrooms from 20 township-level geographical origins by near infrared spectroscopy and ResNet image analysis techniques[J]. Ecological Informatics, 2022, 71: 101808
doi: 10.1016/j.ecoinf.2022.101808
[38]   SUJATHA R, CHATTERJEE J M, JHANJHI N, et al. Performance of deep learning vs machine learning in plant leaf disease detection [J]. Microprocessors Microsystems 2021, 80: 103615.
[39]   LU B, TIAN F, CHEN C, et al Identification of Chinese red wine origins based on Raman spectroscopy and deep learning[J]. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2023, 291: 122355
doi: 10.1016/j.saa.2023.122355
[40]   李运堂, 李恒杰, 张坤, 等 基于新型编码解码网络的复杂输电线识别[J]. 浙江大学学报: 工学版, 2024, 58 (6): 1133- 1141
LI Yuntang, LI Hengjie, ZHANG Kun, et al Recognition of complex power lines based on novel encoder-decoder network[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (6): 1133- 1141
[41]   陈思羽, 朱红媛, 于添, 等 基于Opt-MobileNetV3的大豆种子异常籽粒识别研究[J]. 农业机械学报, 2023, 54 (Suppl. 2): 359- 365
CHEN Siyu, ZHU Hongyuan, WANG Junfa, et al Abnormal soybean grains recognition based on Opt-MobileNetV3[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (Suppl. 2): 359- 365
[42]   夏芳, 彭杰, 王乾龙, 等 基于省域尺度的农田土壤重金属高光谱预测[J]. 红外与毫米波学报, 2015, 34 (5): 593- 599
XIA Fang, PENG Jie, WANG Qianlong, et al Prediction of heavy metal content in soil of cultivated land: hyperspectral technology at provincial scale[J]. Journal of Infrared and Millimeter Waves, 2015, 34 (5): 593- 599
doi: 10.11972/j.issn.1001-9014.2015.05.014
[1] Jizhong DUAN,Haiyuan LI. Multi-scale parallel magnetic resonance imaging reconstruction based on variational model and Transformer[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1826-1837.
[2] Fujian WANG,Zetian ZHANG,Xiqun CHEN,Dianhai WANG. Usage prediction of shared bike based on multi-channel graph aggregation attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1986-1995.
[3] Hong ZHANG,Xuecheng ZHANG,Guoqiang WANG,Panlong GU,Nan JIANG. Real-time positioning and control of soft robot based on three-dimensional vision[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1574-1582.
[4] Xinyu WEI,Lei RAO,Guangyu FAN,Niansheng CHEN,Songlin CHENG,Dingyu YANG. High-precision real-time semantic segmentation network for UAV remote sensing images[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1411-1420.
[5] Shengju WANG,Zan ZHANG. Missing value imputation algorithm based on accelerated diffusion model[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1471-1480.
[6] Dongping ZHANG,Dawei WANG,Shuji HE,Siliang TANG,Zhiyong LIU,Zhongqiu LIU. Remaining useful life prediction of aircraft engines based on cross-dimensional feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1504-1513.
[7] Yongqing CAI,Cheng HAN,Wei QUAN,Wudi CHEN. Visual induced motion sickness estimation model based on attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1110-1118.
[8] Lihong WANG,Xinqian LIU,Jing LI,Zhiquan FENG. Network intrusion detection method based on federated learning and spatiotemporal feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1201-1210.
[9] Huizhi XU,Xiuqing WANG. Perception of distance and speed of front vehicle based on vehicle image features[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1219-1232.
[10] Mengyao ZHANG,Jie ZHOU,Wenting LI,Yong ZHAO. Three-dimensional mesh segmentation framework using global and local information[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 912-919.
[11] Zan CHEN,Ran LI,Yuanjing FENG,Yongqiang LI. Video snapshot compressive imaging reconstruction based on temporal super-resolution[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 956-963.
[12] Li MA,Yongshun WANG,Yao HU,Lei FAN. Pre-trained long-short spatiotemporal interleaved Transformer for traffic flow prediction applications[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 669-678.
[13] Xinyu QIAN,Qinglin XIE,Gongquan TAO,Zefeng WEN. Quantitative identification method of wheel flats based on multi-structured data-driven[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 688-697.
[14] Qiaohong CHEN,Menghao GUO,Xian FANG,Qi SUN. Image captioning based on cross-modal cascaded diffusion model[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 787-794.
[15] Zhengyu GU,Feifei LAI,Chen GENG,Ximing WANG,Yakang DAI. Knowledge-guided infarct segmentation of ischemic stroke[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 814-820.