Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (10): 2213-2220    DOI: 10.3785/j.issn.1008-973X.2025.10.022
    
CSK design scheme of visible light communication based on spatial modulation
Zongyan LI1,2(),Zheng SUN1,Han GAO1,Hongmei WANG1,Shuai MA3,Jinling SONG1,*(),Shiyin LI1
1. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
2. Guangxi Wireless Broadband Communication and Signal Processing Key Laboratory, Guilin University of Electronic Technology, Guilin 541004, China
3. Department of Strategic and Advanced Interdisciplinary Research, Pengcheng Laboratory, Shenzhen 518055, China
Download: HTML     PDF(1181KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To improve the transmission quality of visible light communication systems using color-shift keying (CSK) modulation, two spatial modulation (SM)-based CSK design schemes were proposed. Based on the three-dimensional light intensity space, the value of the CSK symbol coordinate was extended to a bipolar signal. By introducing SM, the extended CSK symbol was converted into a unipolar signal, making it suitable for transmission in terms of light intensity. Criteria for symbol subset partitioning were designed based on the triangle partitioning of the CSK symbol set, and a constant intensity plane-based SM-CSK design scheme (CIP-SM-CSK) was proposed to maximize the minimum Euclidean distance (MED) of CSK symbols under the constraints of constant light intensity and white light. A multi-sphere partitioning-based SM-CSK design-scheme (MSP-SM-CSK) was proposed to further increase the MED, and the sequential quadratic programming algorithm was used to solve the optimization problem. The MEDs of CSK schemes were calculated, and the simulation results show that the proposed schemes enormously improve the bit error rate of the visible light communication system compared with the existing CSK schemes.



Key wordsvisible light communication      color-shift keying (CSK) modulation      spatial modulation      minimum Euclidean distance      bit error rate     
Received: 22 August 2024      Published: 27 October 2025
CLC:  TN 91  
Fund:  国家自然科学基金资助项目(62293483);广西无线宽带通信与信号处理重点实验室基金项目资助(桂科AD25069102).
Corresponding Authors: Jinling SONG     E-mail: lizongyan@cumt.edu.cn;jinlingsong@cumt.edu.cn
Cite this article:

Zongyan LI,Zheng SUN,Han GAO,Hongmei WANG,Shuai MA,Jinling SONG,Shiyin LI. CSK design scheme of visible light communication based on spatial modulation. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2213-2220.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.10.022     OR     https://www.zjujournals.com/eng/Y2025/V59/I10/2213


基于空间调制的可见光通信CSK设计方案

为了提升色移键控(CSK)调制可见光通信系统的传输质量,提出2种基于空间调制(SM)的CSK设计方案. 基于三维光强度空间将CSK符号坐标的取值扩展为双极性信号;引入SM,将扩展CSK符号转换为单极性信号以适于在光强度上传输. 基于三角划分CSK符号集设计符号子集划分准则,在恒定光强度和白光约束下,以最大化CSK符号的最小欧式距离(MED)为目标函数,提出恒定强度面的SM-CSK设计方案(CIP-SM-CSK). 为了进一步增大MED,提出多球面(MSP)的SM-CSK设计方案(MSP-SM-CSK),使用顺序二次规划算法进行优化问题的求解. 进行CSK方案的MED计算分析,仿真结果表明:相比现有CSK方案,所提方案极大改善了可见光通信系统的误比特率.


关键词: 可见光通信,  色移键控(CSK)调制,  空间调制,  最小欧式距离,  误比特率 
Fig.1 Visible light communication system model mapped by spatial modulation-CSK
扩展CSK信号LED索引SM-CSK信号
${s_{{\mathrm{r}},i}} \gt 0$1${s_{{\mathrm{r1}},i}} = {s_{{\mathrm{r}},i}}$
${s_{{\mathrm{g}},i}} \gt 0$2${s_{{\mathrm{g1}},i}} = {s_{{\mathrm{g}},i}}$
${s_{{\mathrm{b}},i}} \gt 0$3${s_{{\mathrm{b1}},i}} = {s_{{\mathrm{b}},i}}$
${s_{{\mathrm{r}},i}} \lt 0$4${s_{{\mathrm{r2}},i}} = \left| {{s_{{\mathrm{r}},i}}} \right|$
${s_{{\mathrm{g}},i}} \lt 0$5${s_{{\mathrm{g2}},i}} = \left| {{s_{{\mathrm{g}},i}}} \right|$
${s_{{\mathrm{b}},i}} \lt 0$6${s_{{\mathrm{b2}},i}} = \left| {{s_{{\mathrm{b}},i}}} \right|$
Tab.1 Relationship between LED selection and spatial modulation-CSK signal
比特子序列LED索引${{\boldsymbol{s}}_i}$
001${\left[ {{s_{{\mathrm{r1}},i}},0,0,0,0,0} \right]^{\text{T}}}$
012${\left[ {0,{s_{{\mathrm{g1}},i}},0,0,0,0} \right]^{\text{T}}}$
103${\left[ {0,0,{s_{{\mathrm{b1}},i}},0,0,0} \right]^{\text{T}}}$
114, 5, 6${\left[ {0,0,0,{s_{{\mathrm{r2}},i}},{s_{{\mathrm{g2}},i}},{s_{{\mathrm{b2}},i}}} \right]^{\text{T}}}$
Tab.2 Mapping rules for quaternary spatial modulation-CSK
Fig.2 Constellation diagram of constant intensity plane-based spatial modulation-CSK
M星座点
4$ {{\boldsymbol{s}}_1}{\text{ = }}{[1,0,0,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_2}{\text{ = }}{[0,1,0,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_3}{\text{ = }}{[0,0,1,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_4}{\text{ = }}{[0,0,0,0,0,0]^{\text{T}}} $
8$ {{\boldsymbol{s}}_1}{\text{ = }}{[1,0,0,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_2}{\text{ = }}{[0,1,0,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_3}{\text{ = }}{[0,0,1,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_4}{\text{ = }}{[0.333\;3,0.333\;3,0.333\;3,0,0,0]^{\text{T}}} $
$ {{\boldsymbol{s}}_5}{\text{ = }}{[0,0,0,1,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_6}{\text{ = }}{[0,0,0,0,1,0]^{\text{T}}} $$ {{\boldsymbol{s}}_7}{\text{ = }}{[0,0,0,0,0,1]^{\text{T}}} $$ {{\boldsymbol{s}}_8}{\text{ = }}{[0,0,0,0.333\;3,0.333\;3,0.333\;3]^{\text{T}}} $
16$ {{\boldsymbol{s}}_1}{\text{ = }}{[1,0,0,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_2}{\text{ = }}{[0,1,0,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_3}{\text{ = }}{[0,0,1,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_4}{\text{ = }}{[0,0.333\;3,0.666\;6,0,0,0]^{\text{T}}} $
$ {{\boldsymbol{s}}_5}{\text{ = }}{[0,0.666\;6,0.333\;3,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_6}{\text{ = }}{[0.333\;3,0,0.666\;6,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_7}{\text{ = }}{[0.666\;6,{\text{0}},{\text{0}}{\text{.333 3}},0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_8}{\text{ = }}{[{\text{0}}{\text{.333 3}},0.666\;6,{\text{0}},0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_9}{\text{ = }}{[{\text{0}}{\text{.666 6}},{\text{ 0}}{\text{.333 3}},{\text{ }}0,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_{10}}{\text{ = }}{[0.333\;3,0.333\;3,0.333\;3,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_{11}}{\text{ = }}{[0,0,0,1,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_{12}}{\text{ = }}{[0,0,0,0,1,0]^{\text{T}}} $$ {{\boldsymbol{s}}_{13}}{\text{ = }}{[0,0,0,0,0,1]^{\text{T}}} $$ {{\boldsymbol{s}}_{14}}{\text{ = }}{[0,0,0,0,0.5,0.5]^{\text{T}}} $$ {{\boldsymbol{s}}_{15}}{\text{ = }}{[0,0,0,0.5,0,0.5]^{\text{T}}} $$ {{\boldsymbol{s}}_{16}}{\text{ = }}{[0,0,0,0.5,0.5,0]^{\text{T}}} $
Tab.3 Symbol coordinates of constant intensity plane based spatial modulation-CSK
Fig.3 Constellation diagram of octal multi-sphere partitioning-based spatial modulation-CSK
Fig.4 Constellation diagram of hexadecimal multi-sphere partitioning-based spatial modulation-CSK
M星座点
8$ {{\boldsymbol{s}}_1}{\text{ = }}{[1,0,0,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_2}{\text{ = }}{[0,1,0,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_3}{\text{ = }}{[0,0,1,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_4}{\text{ = }}{[0.666\;6,0.666\;6,0.666\;6,0,0,0]^{\text{T}}} $
$ {{\boldsymbol{s}}_5}{\text{ = }}{[0,0,0,1,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_6}{\text{ = }}{[0,0,0,0,1,0]^{\text{T}}} $$ {{\boldsymbol{s}}_7}{\text{ = }}{[0,0,0,0,0,1]^{\text{T}}} $$ {{\boldsymbol{s}}_8}{\text{ = }}{[0,0,0,0,0,0]^{\text{T}}} $
16$ {{\boldsymbol{s}}_1}{\text{ = }}{[1.339\;9,0,0,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_2}{\text{ = }}{[0,1.339\;9,0,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_3}{\text{ = }}{[0,0,1.339\;9,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_4}{\text{ = }}{[0.656\;6,0,0,0,0,0]^{\text{T}}} $
$ {{\boldsymbol{s}}_5}{\text{ = }}{[0,0.656\;6,0,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_6}{\text{ = }}{[0,0,0.656\;6,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_7}{\text{ = }}{[0,{\text{0}}{\text{.669 9}},{\text{0}}{\text{.669 9}},0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_8}{\text{ = }}{[{\text{0}}{\text{.669 9}},0,{\text{0}}{\text{.669 9}},0,0,0]^{\text{T}}} $
$ {{\boldsymbol{s}}_9}{\text{ = }}{[{\text{0}}{\text{.669 9}},{\text{0}}{\text{.669 9}},0,0,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_{10}}{\text{ = }}{[0,0,0,1.339\;9,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_{11}}{\text{ = }}{[0,0,0,0,1.339\;9,0]^{\text{T}}} $$ {{\boldsymbol{s}}_{12}}{\text{ = }}{[0,0,0,0,0,1.339\;9]^{\text{T}}} $
$ {{\boldsymbol{s}}_{13}}{\text{ = }}{[0,0,0,0.656\;6,0,0]^{\text{T}}} $$ {{\boldsymbol{s}}_{14}}{\text{ = }}{[0,0,0,0,0.656\;6,0]^{\text{T}}} $$ {{\boldsymbol{s}}_{15}}{\text{ = }}{[0,0,0,0,0,0.656\;6]^{\text{T}}} $$ {{\boldsymbol{s}}_{16}}{\text{ = }}{[0,0,0,0,0,0]^{\text{T}}} $
Tab.4 Symbol coordinates of multi-sphere partitioning-based spatial modulation-CSK
方案$ R $$ {N_{{\text{ave}}}} $$ d_{\min }^2 $方案$ R $$ {N_{{\text{ave}}}} $$ d_{\min }^2 $方案$ R $$ {N_{{\text{ave}}}} $$ d_{\min }^2 $
4-CSK21.50.678-CSK32.250.2216-CSK42.250.07
4-SCSK21.50.938-SCSK32.000.2716-SCSK42.000.11
4-MIP-CSK23.00.898-MIP-CSK32.250.3416-MIP-CSK43.380.18
4-CIP-SM-CSK23.01.788-CIP-SM-CSK31.750.6716-CIP-SM-CSK42.250.22
8-MSP-SM-CSK32.251.0016-MSP-SM-CSK40.750.43
Tab.5 Parameter comparison of different CSK schemes
Fig.5 Variation curve of bit error rate of different CSK schemes with signal-to-noise ratio
[1]   唐维红. 中国移动互联网发展报告(2023)[M]. 北京: 社会科学文献出版社, 2023.
[2]   IMT-2030推进组 IMT-2030(6G)推进组正式发布《6G总体愿景与潜在关键技术》白皮书[J]. 互联网天地, 2021, (6): 8- 9
IMT-2030 Promotion Group IMT-2030 (6G) Promotion Group officially released the white paper on 6G vision and candidate technologies[J]. China Internet, 2021, (6): 8- 9
[3]   IEEE Computer Society. IEEE Standard for local and metropolitan area networks--Part 15.7: short-range wireless optical communication using visible light: IEEE 802.15.7-2011 [S]. New York: IEEE, 2011.
[4]   MONTEIRO E, HRANILOVIC S Design and implementation of color-shift keying for visible light communications[J]. Journal of Lightwave Technology, 2014, 32 (10): 2053- 2060
doi: 10.1109/JLT.2014.2314358
[5]   MONTEIRO E, HRANILOVIC S. Constellation design for color-shift keying using interior point methods [C]// Proceedings of the IEEE Globecom Workshops. Anaheim: IEEE, 2012: 1224–1228.
[6]   DROST R J, SADLER B M. Constellation design for color-shift keying using billiards algorithms [C]// Proceedings of the IEEE Globecom Workshops. Miami: IEEE, 2010: 980–984.
[7]   SHEN P, HE Y, QI W, et al. RIS enabled spatial modulation in VLC with maximized euclidean distance [C]// Proceedings of the IEEE International Conference on Communications Workshops. Denver: IEEE, 2024: 950–956.
[8]   JIA L, SHU F, CHEN M, et al Joint constellation-labeling optimization for VLC-CSK systems[J]. IEEE Wireless Communications Letters, 2019, 8 (4): 1280- 1284
doi: 10.1109/LWC.2019.2916336
[9]   ANWAR D N, SRIVASTAVA A Design and analysis of probabilistic shaping in color shift keying modulation schemes[J]. IEEE Systems Journal, 2021, 15 (1): 1433- 1444
doi: 10.1109/JSYST.2020.3007391
[10]   CHEN W, CHEN B, JIANG M Spherical quasi-physical model-based color-shift keying for visible light communication[J]. IEEE Transactions on Wireless Communications, 2020, 19 (12): 8099- 8112
doi: 10.1109/TWC.2020.3019107
[11]   AZIZ A E, WONG K T Optical wireless communications that exploits the human vision’s tolerance of light fluctuations in intensity and chromaticity[J]. IEEE Photonics Journal, 2022, 14 (4): 7336005
[12]   LI Z, YUAN Z, MA S, et al. A joint coded-modulation scheme of Median partition color-shift keying for visible light communications [C]// Proceedings of the ICC 2022 - IEEE International Conference on Communications. Seoul: IEEE, 2022: 3136–3141.
[13]   LI Z, SHI T, SHAN B, et al Multi-intensity planes constellation and code design-based color-shift keying for visible light communications[J]. IEEE Internet of Things Journal, 2023, 10 (21): 19187- 19198
doi: 10.1109/JIOT.2023.3281497
[14]   WANG Y, WEI J, HUANG N, et al Sensing-aided CSK constellation design for multi-color VLC system with random receiver orientation[J]. IEEE Transactions on Wireless Communications, 2024, 23 (9): 11401- 11416
doi: 10.1109/TWC.2024.3382039
[15]   BERMAN S M, GREENHOUSE D S, BAILEY I L, et al Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources[J]. Optometry and Vision Science, 1991, 68 (8): 645- 662
doi: 10.1097/00006324-199108000-00012
[16]   WANG F, ZUO T, ZHANG J, et al SM and NOMA joint assisted indoor multi-user VLC downlink[J]. IEEE Transactions on Green Communications and Networking, 2024, 9 (1): 15- 28
[17]   DAI L, FANG Y, GUAN Y, et al Design of protograph LDPC-coded MIMO-VLC systems with generalized spatial modulation[J]. China Communications, 2024, 21 (3): 118- 136
doi: 10.23919/JCC.ja.2022-0784
[18]   YANG Z, GUAN Y L, FANG Y, et al Capacity, convergence, and complexity improvements for LDPC-coded MIMO-VLC systems with generalized spatial modulation[J]. IEEE Transactions on Communications, 2024, 72 (7): 4226- 4242
doi: 10.1109/TCOMM.2024.3366114
[19]   SHAO S, SHI Y, DANG J, et al On the capacity region of optical mobile communication systems with spatial light modulation[J]. IEEE Transactions on Vehicular Technology, 2025, 74 (3): 4596- 4607
doi: 10.1109/TVT.2024.3499321
[20]   GFELLER F R, BAPST U Wireless in-house data communication via diffuse infrared radiation[J]. Proceedings of the IEEE, 1979, 67 (11): 1474- 1486
doi: 10.1109/PROC.1979.11508
[21]   CHEN J, HONG Y, WANG Z, et al. Precoded visible light communications [C]// Proceedings of the 9th International Conference on Information, Communications and Signal Processing. Tainan: IEEE, 2013: 1–4.
[22]   MEJIA C E, GEORGHIADES C N Coding for visible light communication using color-shift keying constellations[J]. IEEE Transactions on Communications, 2019, 67 (7): 4955- 4966
doi: 10.1109/TCOMM.2019.2907939
[1] Wei ZHOU,Wenjing DOU,Qianqian LI,Rui XU. GSM-OTFS signal detection algorithm based on belief propagation and expectation propagation[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2609-2618.