Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (4): 804-813    DOI: 10.3785/j.issn.1008-973X.2025.04.016
    
Dual-activation gated convolution with SAR fusion for thick cloud removal from optical remote sensing images
Jinhui YANG1(),Xianjun GAO1,*(),Yuan KOU2,5,Shengyan YU3,Lei XU4,Yuanwei YANG1
1. School of Geosciences, Yangtze University, Wuhan 430100, China
2. Innovation and Research Department, the First Surveying and Mapping Institute of Hunan Province, Changsha 421001, China
3. Inner Mongolia Autonomous Region Surveying and Mapping Geographic Information Center, Hohhot 010050, China
4. China Railway Design Corporation, Tianjin 300308, China
5. Hunan Engineering Research Center of 3D Real Scene Construction and Application Technology, Changsha 421001, China
Download: HTML     PDF(4312KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A cloud removal network for remote sensing imagery that integrated synthetic aperture radar (SAR) and optical data was proposed to address the issues of unstable performance and uneven color tones in existing deep learning-based cloud removal methods. The true texture information from SAR images and the spatial-spectral feature information from optical images were used to construct feature reconstruction tasks both globally and locally, and these tasks guided the network to rebuild missing information in cloud-covered areas. The dual-activation gated convolutional blocks and the channel attention blocks were utilized to build a spatial-spectral feature inference and reconstruction block which significantly enhanced the network’s ability to extract features from useful information in non-cloud areas. The SEN12MS-CR-TS dataset was divided into four subsets based on different cloud morphologies and cloud contents for training and testing. The experimental results showed that the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) of the proposed method were 1.038 4 dB and 0.091 5, respectively, which were higher than those of the best cloud removal methods. Thus the remote sensing image thick cloud removal network, which integrates SAR and optical data, can effectively remove clouds from images and reconstruct the details beneath the clouds.



Key wordsthick cloud removal      SAR      data fusion      gated convolution      dual-flow guidance     
Received: 18 August 2024      Published: 25 April 2025
CLC:  P 237  
  TP 751  
Fund:  西藏自治区科技计划重大专项(XZ202402ZD0001);深地国家科技重大专项(2024ZD1001003);城市轨道交通数字化建设与测评技术国家工程实验室开放课题基金资助项目(2023ZH01);天津市科技计划项目(23YFYSHZ00190,23YFZCSN00280);湖南省自然科学基金项目部门联合基金资助项目(2024JJ8327).
Corresponding Authors: Xianjun GAO     E-mail: 2022710467@yangtzeu.edu.cn;junxgao@yangtzeu.edu.cn
Cite this article:

Jinhui YANG,Xianjun GAO,Yuan KOU,Shengyan YU,Lei XU,Yuanwei YANG. Dual-activation gated convolution with SAR fusion for thick cloud removal from optical remote sensing images. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 804-813.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.04.016     OR     https://www.zjujournals.com/eng/Y2025/V59/I4/804


融合SAR的光学遥感影像双激活门控卷积厚云去除

针对现有基于深度学习的去云方法性能不稳定、色调不均衡等问题,提出融合合成孔径雷达(SAR)和光学数据的遥感影像厚云去除网络. 利用SAR图像的真实纹理信息和光学图像的空谱特征信息,从全局和局部构建特征重建任务,引导网络重建云遮挡区域的缺失信息. 使用双激活门控卷积块和通道注意力块构建空谱特征推理重建模块,提高网络对非云区域有用信息的特征提取能力. 根据云形态和含云量不同将SEN12MS-CR-TS数据集拆分成4个子数据集进行训练和测试. 实验结果表明,此方法的峰值信噪比(PSNR)和结构相似性指数(SSIM)比去云效果最优的对比方法分别高出1.038 4 dB和0.091 5,说明融合SAR和光学数据的遥感影像厚云去除网络可有效去除影像中的云,并完成云下细节信息的重建.


关键词: 厚云去除,  SAR,  数据融合,  门控卷积,  双流引导 
Fig.1 Overall structure diagram of remote sensing image thick cloud removal network
Fig.2 Structure diagram of spatial-spectral feature inference reconstruction block
数据集类别x/%N
Thin_CI薄云x $< $ 104 849
Brok_CI碎云10 $\leqslant $ x $< $ 307 718
LBrok_CI大范围碎云30 $\leqslant $ x $< $ 605 823
Thick_CI厚云x $\geqslant $ 607 429
Tab.1 Detailed information on different datasets
Fig.3 Comparison of cloud removal results across different methods on different datasets
数据集方法PSNR/dBRMSESSIM
Thin_CISAR-opt-cGAN28.157 70.084 10.650 3
McGAN28.143 10.072 20.640 3
USSRN-CR29.195 50.073 80.706 4
本文方法29.880 30.068 40.793 4
Brok_CISAR-opt-cGAN28.157 60.105 20.629 8
McGAN28.291 60.098 20.634 7
USSRN-CR29.898 10.068 90.721 1
本文方法31.499 80.059 60.812 7
LBrok_CISAR-opt-cGAN28.105 90.087 80.566 4
McGAN28.200 40.100 10.560 8
USSRN-CR29.556 60.108 70.646 3
本文方法30.833 90.079 80.746 0
Thick_CISAR-opt-cGAN28.059 90.071 40.474 8
McGAN28.040 60.085 60.409 7
USSRN-CR28.846 40.077 90.583 7
本文方法29.436 40.072 90.671 3
Tab.2 Quantitative evaluation results of different methods on different datasets
结构数据集PSNR/dBRMSESSIM
无全局特征引导Thin_CI29.132 10.076 40.755 0
Brok_CI30.210 10.079 20.780 1
LBrok_CI29.615 80.097 60.718 2
Thick_CI28.895 30.101 50.634 4
有全局特征引导Thin_CI29.880 30.068 40.793 4
Brok_CI31.499 80.059 60.812 7
LBrok_CI30.833 90.079 80.746 0
Thick_CI29.436 40.072 90.671 3
Tab.3 Quantitative evaluation of cloud removal effect guided by global features
数据集结构PSNR/dBRMSESSIM
Thin_CIA29.293 50.072 40.732 9
B28.737 00.095 20.689 1
C29.398 50.071 30.775 9
SSFIRB29.880 30.068 40.793 4
Brok_CIA30.362 10.064 00.726 2
B29.023 10.078 90.694 2
C30.646 70.069 10.793 0
SSFIRB31.499 80.059 60.812 7
LBrok_CIA29.983 10.087 60.676 2
B28.826 50.137 10.623 8
C29.728 60.136 00.721 4
SSFIRB30.833 90.079 80.746 0
Thick_CIA28.431 20.115 20.569 6
B28.219 80.111 60.575 2
C28.953 90.076 00.635 8
SSFIRB29.436 40.072 90.671 3
Tab.4 Quantitative evaluation of cloud removal effectiveness by dual-activation gated convolution and channel attention mechanisms
Fig.4 Impact of different data combination schemes on cloud removal performance
特征来源PSNR/dBRMSESSIM
光学数据29.205 70.083 60.574 9
SAR29.436 40.072 90.671 3
SAR+光学29.256 80.077 80.580 2
Tab.5 Impact of different data combination schemes on image restoration
特征提取结构MIoUAPR
CNN0.895 90.959 20.883 80.949 4
GC0.906 10.960 40.909 00.938 9
DAGC0.907 70.964 80.915 50.934 7
Tab.6 Analysis of cloud and cloudless extraction using different feature extraction structures
Fig.5 Transfer effect comparison of proposed method across different datasets
训练集测试集ΔPSNR/dBΔRMSEΔSSIM
Thin_
CI
Thin_CI
Brok_CI?1.394 3+0.004 3?0.105 4
LBrok_CI?1.637 0+0.030 1?0.189 4
Thick_CI?1.545 9+0.014 4?0.226 0
Brok_
CI
Thin_CI?3.350 4+0.056 1?0.144 8
Brok_CI
LBrok_CI?2.764 5+0.044 0?0.154 2
Thick_CI?3.264 4+0.040 9?0.230 9
LBrok_
CI
Thin_CI?2.699 2+0.040 3?0.123 4
Brok_CI?2.021 1+0.012 7?0.050 8
LBrok_CI
Thick_CI?2.542 9+0.037 8?0.167 2
Thick_
CI
Thin_CI?0.760 6+0.010 1?0.000 4
Brok_CI?0.677 3+0.033 5?0.001 4
LBrok_CI?0.633 6+0.084 1?0.012 6
Thick_CI
Tab.7 Quantitative evaluation of migration effect of proposed method on different datasets
[1]   GAO X, ZHANG G, YANG Y, et al Two-stage domain adaptation based on image and feature levels for cloud detection in cross-spatiotemporal domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5610517
[2]   CHANG J, GAO X, YANG Y, et al Object-oriented building contour optimization methodology for image classification results via generalized gradient vector flow snake model[J]. Remote Sensing, 2021, 13 (12): 2406
doi: 10.3390/rs13122406
[3]   宦海, 盛宇, 顾晨曦 基于遥感图像道路提取的全局指导多特征融合网络[J]. 浙江大学学报: 工学版, 2024, 58 (4): 696- 707
HUAN Hai, SHENG Yu, GU Chenxi Global guidance multi-feature fusion network based on remote sensing image road extraction[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (4): 696- 707
[4]   ZHANG G, GAO X, YANG Y, et al Controllably deep supervision and multi-scale feature fusion network for cloud and snow detection based on medium- and high-resolution imagery dataset[J]. Remote Sensing, 2021, 13 (23): 4805
doi: 10.3390/rs13234805
[5]   HAN S, WANG J, ZHANG S Former-CR: a transformer-based thick cloud removal method with optical and SAR imagery[J]. Remote Sensing, 2023, 15 (5): 1196
doi: 10.3390/rs15051196
[6]   KING M D, PLATNICK S, MENZEL W P, et al Spatial and temporal distribution of clouds observed by MODIS onboard the terra and aqua satellites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51 (7): 3826- 3852
doi: 10.1109/TGRS.2012.2227333
[7]   陈津乐, 张锦水, 段雅鸣, 等 中分辨率遥感影像云检测与厚云去除研究综述[J]. 遥感技术与应用, 2023, 38 (1): 143- 155
CHEN Jinle, ZHANG Jinshui, DUAN Yaming, et al A review of cloud detection and thick cloud removal in medium resolution remote sensing images.[J]. Remote Sensing Technology and Application, 2023, 38 (1): 143- 155
[8]   MAO R, LI H, REN G, et al Cloud removal based on SAR-optical remote sensing data fusion via a two-flow network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 7677- 7686
doi: 10.1109/JSTARS.2022.3203508
[9]   CHEN Y, TANG L, YANG X, et al Thick clouds removal from multitemporal ZY-3 satellite images using deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 143- 153
doi: 10.1109/JSTARS.2019.2954130
[10]   LI W, LI Y, CHAN J Thick cloud removal with optical and SAR imagery via convolutional-mapping-deconvolutional network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58 (4): 2865- 2879
doi: 10.1109/TGRS.2019.2956959
[11]   SHEN H, LI X, CHENG Q, et al Missing information reconstruction of remote sensing data: a technical review[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3 (3): 61- 85
doi: 10.1109/MGRS.2015.2441912
[12]   MERANER A, EBEL P, ZHU X, et al Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 333- 346
doi: 10.1016/j.isprsjprs.2020.05.013
[13]   HOAN N, TATEISHI R Cloud removal of optical image using SAR data for ALOS applications: experimenting on simulated ALOS data[J]. Journal of The Remote Sensing Society of Japan, 2009, 29 (2): 410- 417
[14]   LEE S, CHO M, LEE C An effective gap filtering method for Landsat ETM plus SLC-off data[J]. Terrestrial Atmospheric and Oceanic Sciences, 2016, 27 (6): 921- 932
doi: 10.3319/TAO.2016.07.18.02
[15]   LIN C, TSAI P, LAI K, et al Cloud removal from multitemporal satellite images using information cloning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51 (1): 232- 241
doi: 10.1109/TGRS.2012.2197682
[16]   KALKAN K, MAKTAV M D A cloud removal algorithm to generate cloud and cloud shadow free images using information cloning[J]. Journal of the Indian Society of Remote Sensing, 2018, 46 (8): 1255- 1264
doi: 10.1007/s12524-018-0806-y
[17]   MELGANI F Contextual reconstruction of cloud-contaminated multitemporal multispectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44 (2): 442- 455
doi: 10.1109/TGRS.2005.861929
[18]   ZHU X, GAO F, LIU D, et al A modified neighborhood similar pixel interpolator approach for removing thick clouds in Landsat images[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9 (3): 521- 525
doi: 10.1109/LGRS.2011.2173290
[19]   MENG Q, BORDERS B E, CIESZEWSKI C J, et al Closest spectral fit for removing clouds and cloud shadows[J]. Photogrammetric Engineering and Remote Sensing, 2009, 75 (5): 569- 576
doi: 10.14358/PERS.75.5.569
[20]   ZHANG Q, YUAN Q, ZENG C, et al Missing data reconstruction in remote sensing image with a unified spatial-temporal-spectral deep convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56 (8): 4274- 4288
doi: 10.1109/TGRS.2018.2810208
[21]   ZHANG Q, YUAN Q, LI J, et al Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 148- 160
doi: 10.1016/j.isprsjprs.2020.02.008
[22]   ZHANG L, ZHANG M, SUN X, et al Cloud removal for hyperspectral remotely sensed images based on hyperspectral information fusion[J]. International Journal of Remote Sensing, 2018, 39 (20): 6646- 6656
doi: 10.1080/01431161.2018.1466068
[23]   XU T, GAO X, YANG Y, et al Construction of a semantic segmentation network for the overhead catenary system point cloud based on multi-scale feature fusion[J]. Remote Sensing, 2022, 14 (12): 2768
doi: 10.3390/rs14122768
[24]   郭承乾, 马刚, 梅江洲, 等 基于InSAR与多源数据融合的堆石坝外观变形重构[J]. 浙江大学学报: 工学版, 2022, 56 (2): 347- 355
GUO Chengqian, MA Gang, MEI Jiangzhou, et al Exterior deformation reconstruction of rockfill dam based on InSAR and multi-source data fusion[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (2): 347- 355
[25]   GROHNFELDT C, SCHMITT M, ZHU X. A conditional generative adversarial network to fuse SAR and multispectral optical data for cloud removal from Sentinel-2 images [C]// IEEE International Geoscience and Remote Sensing Symposium . Valencia: IEEE, 2018: 1726–1729.
[26]   WANG Y, ZHANG B, ZHANG W, et al Cloud removal with SAR-optical data fusion using a unified spatial-spectral residual network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5600820
[27]   LIU Y, WANG X, WANG L, et al A modified leaky ReLU scheme (MLRS) for topology optimization with multiple materials[J]. Applied Mathematics and Computation, 2019, 352: 188- 204
doi: 10.1016/j.amc.2019.01.038
[28]   CHEN L, CHU X, ZHANG X, et al. Simple baselines for image restoration [C]// European Conference on Computer Vision . Tel Aviv: Springer, 2022: 17–33.
[29]   EBEL P, XU Y, SCHMITT M, et al SEN12MS-CR-TS: a remote sensing data set for multi-modal multi-temporal cloud removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1- 14
[30]   LI Z, SHEN H, LI H, et al Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery[J]. Remote Sensing of Environment, 2017, 191: 342- 358
doi: 10.1016/j.rse.2017.01.026
[31]   CHEN L, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// European Conference on Computer Vision . Munich: Springer, 2018: 801–818.
[32]   LOSHCHILOV I, HUTTER F. SGDR: stochastic gradient descent with warm restarts [EB/OL]. (2017–05–03)[2025–03–13]. https://arxiv.org/abs/1608.03983.
[1] Yali XUE,Yiming HE,Shan CUI,Quan OUYANG. Oriented ship detection algorithm in SAR image based on improved YOLOv5[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 261-268.
[2] Lei YANG,Pengju HE,Xingxing CHOU. TimeGAN data augmentation-based fault classification method for complex processes[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1768-1780.
[3] Canlin LI,Xinyue WANG,Lizhuang MA,Zhiwen SHAO,Wenjiao ZHANG. Image cartoonization incorporating attention mechanism and structural line extraction[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1728-1737.
[4] Yin CAO,Junping QIN,Tong GAO,Qianli MA,Jiaqi REN. Generative adversarial network based two-stage generation of high-quality images from text[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 674-683.
[5] Yin CAO,Junping QIN,Qianli MA,Hao SUN,Kai YAN,Lei WANG,Jiaqi REN. Survey of text-to-image synthesis[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 219-238.
[6] Canlin LI,Wenjiao ZHANG,Zhiwen SHAO,Lizhuang MA,Xinyue WANG. Semantic segmentation method on nighttime road scene based on Trans-nightSeg[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 294-303.
[7] Xiaomiao WANG,Yujin ZHANG,Tao ZHANG,Jin TIAN,Fei WU. Fast adversarial training method based on discrete cosine transform[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2230-2238.
[8] Hai-feng LI,Xue-ying ZHANG,Shu-fei DUAN,Hai-rong JIA,Hui-zhi LIANG. Fusing generative adversarial network and temporal convolutional network for Mandarin emotion recognition[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1865-1875.
[9] Yun-hong LI,Jiao-jiao DUAN,Xue-ping SU,Lei-tao ZHANG,Hui-kang YU,Xing-rui LIU. Calligraphy generation algorithm based on improved generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1326-1334.
[10] Jian-ping HUANG,Ke CHEN,Jian-song ZHANG,Si-qi SHEN. Time-series gene driven feature representation model[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1354-1364.
[11] Xiao-lu CAO,Fu-nan LU,Xiang ZHU,Li-bo WENG,Shu-fang LU,Fei GAO. Sketch-based compatible clothing image generation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 939-947.
[12] Chen WANG,Wei LIN,Liang-peng HU,Jun-ming ZHANG. Design and verification of autonomous docking guidance system for modular flying vehicle[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2345-2355.
[13] Jun-hui ZHANG,Xiao-man GUO,Jing-xian WANG,Zong-jie FU,Da-peng CHEN. Safety-enhanced multi-vehicle tracking based on joint probability data association[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2170-2178.
[14] Yan ZHAN,Die HU,Hong-tao TANG,Jian-sha LU,Jian TAN,Chang-rui LIU. Image data enhancement method based on improved generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 1998-2010.
[15] Jun HE,Ya-sheng ZHANG,Can-bin YIN. Operating modes identification of spaceborne SAR based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1676-1684.