|
|
Dual-activation gated convolution with SAR fusion for thick cloud removal from optical remote sensing images |
Jinhui YANG1( ),Xianjun GAO1,*( ),Yuan KOU2,5,Shengyan YU3,Lei XU4,Yuanwei YANG1 |
1. School of Geosciences, Yangtze University, Wuhan 430100, China 2. Innovation and Research Department, the First Surveying and Mapping Institute of Hunan Province, Changsha 421001, China 3. Inner Mongolia Autonomous Region Surveying and Mapping Geographic Information Center, Hohhot 010050, China 4. China Railway Design Corporation, Tianjin 300308, China 5. Hunan Engineering Research Center of 3D Real Scene Construction and Application Technology, Changsha 421001, China |
|
|
Abstract A cloud removal network for remote sensing imagery that integrated synthetic aperture radar (SAR) and optical data was proposed to address the issues of unstable performance and uneven color tones in existing deep learning-based cloud removal methods. The true texture information from SAR images and the spatial-spectral feature information from optical images were used to construct feature reconstruction tasks both globally and locally, and these tasks guided the network to rebuild missing information in cloud-covered areas. The dual-activation gated convolutional blocks and the channel attention blocks were utilized to build a spatial-spectral feature inference and reconstruction block which significantly enhanced the network’s ability to extract features from useful information in non-cloud areas. The SEN12MS-CR-TS dataset was divided into four subsets based on different cloud morphologies and cloud contents for training and testing. The experimental results showed that the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) of the proposed method were 1.038 4 dB and 0.091 5, respectively, which were higher than those of the best cloud removal methods. Thus the remote sensing image thick cloud removal network, which integrates SAR and optical data, can effectively remove clouds from images and reconstruct the details beneath the clouds.
|
Received: 18 August 2024
Published: 25 April 2025
|
|
Fund: 西藏自治区科技计划重大专项(XZ202402ZD0001);深地国家科技重大专项(2024ZD1001003);城市轨道交通数字化建设与测评技术国家工程实验室开放课题基金资助项目(2023ZH01);天津市科技计划项目(23YFYSHZ00190,23YFZCSN00280);湖南省自然科学基金项目部门联合基金资助项目(2024JJ8327). |
Corresponding Authors:
Xianjun GAO
E-mail: 2022710467@yangtzeu.edu.cn;junxgao@yangtzeu.edu.cn
|
融合SAR的光学遥感影像双激活门控卷积厚云去除
针对现有基于深度学习的去云方法性能不稳定、色调不均衡等问题,提出融合合成孔径雷达(SAR)和光学数据的遥感影像厚云去除网络. 利用SAR图像的真实纹理信息和光学图像的空谱特征信息,从全局和局部构建特征重建任务,引导网络重建云遮挡区域的缺失信息. 使用双激活门控卷积块和通道注意力块构建空谱特征推理重建模块,提高网络对非云区域有用信息的特征提取能力. 根据云形态和含云量不同将SEN12MS-CR-TS数据集拆分成4个子数据集进行训练和测试. 实验结果表明,此方法的峰值信噪比(PSNR)和结构相似性指数(SSIM)比去云效果最优的对比方法分别高出1.038 4 dB和0.091 5,说明融合SAR和光学数据的遥感影像厚云去除网络可有效去除影像中的云,并完成云下细节信息的重建.
关键词:
厚云去除,
SAR,
数据融合,
门控卷积,
双流引导
|
|
[1] |
GAO X, ZHANG G, YANG Y, et al Two-stage domain adaptation based on image and feature levels for cloud detection in cross-spatiotemporal domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5610517
|
|
|
[2] |
CHANG J, GAO X, YANG Y, et al Object-oriented building contour optimization methodology for image classification results via generalized gradient vector flow snake model[J]. Remote Sensing, 2021, 13 (12): 2406
doi: 10.3390/rs13122406
|
|
|
[3] |
宦海, 盛宇, 顾晨曦 基于遥感图像道路提取的全局指导多特征融合网络[J]. 浙江大学学报: 工学版, 2024, 58 (4): 696- 707 HUAN Hai, SHENG Yu, GU Chenxi Global guidance multi-feature fusion network based on remote sensing image road extraction[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (4): 696- 707
|
|
|
[4] |
ZHANG G, GAO X, YANG Y, et al Controllably deep supervision and multi-scale feature fusion network for cloud and snow detection based on medium- and high-resolution imagery dataset[J]. Remote Sensing, 2021, 13 (23): 4805
doi: 10.3390/rs13234805
|
|
|
[5] |
HAN S, WANG J, ZHANG S Former-CR: a transformer-based thick cloud removal method with optical and SAR imagery[J]. Remote Sensing, 2023, 15 (5): 1196
doi: 10.3390/rs15051196
|
|
|
[6] |
KING M D, PLATNICK S, MENZEL W P, et al Spatial and temporal distribution of clouds observed by MODIS onboard the terra and aqua satellites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51 (7): 3826- 3852
doi: 10.1109/TGRS.2012.2227333
|
|
|
[7] |
陈津乐, 张锦水, 段雅鸣, 等 中分辨率遥感影像云检测与厚云去除研究综述[J]. 遥感技术与应用, 2023, 38 (1): 143- 155 CHEN Jinle, ZHANG Jinshui, DUAN Yaming, et al A review of cloud detection and thick cloud removal in medium resolution remote sensing images.[J]. Remote Sensing Technology and Application, 2023, 38 (1): 143- 155
|
|
|
[8] |
MAO R, LI H, REN G, et al Cloud removal based on SAR-optical remote sensing data fusion via a two-flow network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 7677- 7686
doi: 10.1109/JSTARS.2022.3203508
|
|
|
[9] |
CHEN Y, TANG L, YANG X, et al Thick clouds removal from multitemporal ZY-3 satellite images using deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 143- 153
doi: 10.1109/JSTARS.2019.2954130
|
|
|
[10] |
LI W, LI Y, CHAN J Thick cloud removal with optical and SAR imagery via convolutional-mapping-deconvolutional network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58 (4): 2865- 2879
doi: 10.1109/TGRS.2019.2956959
|
|
|
[11] |
SHEN H, LI X, CHENG Q, et al Missing information reconstruction of remote sensing data: a technical review[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3 (3): 61- 85
doi: 10.1109/MGRS.2015.2441912
|
|
|
[12] |
MERANER A, EBEL P, ZHU X, et al Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 333- 346
doi: 10.1016/j.isprsjprs.2020.05.013
|
|
|
[13] |
HOAN N, TATEISHI R Cloud removal of optical image using SAR data for ALOS applications: experimenting on simulated ALOS data[J]. Journal of The Remote Sensing Society of Japan, 2009, 29 (2): 410- 417
|
|
|
[14] |
LEE S, CHO M, LEE C An effective gap filtering method for Landsat ETM plus SLC-off data[J]. Terrestrial Atmospheric and Oceanic Sciences, 2016, 27 (6): 921- 932
doi: 10.3319/TAO.2016.07.18.02
|
|
|
[15] |
LIN C, TSAI P, LAI K, et al Cloud removal from multitemporal satellite images using information cloning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51 (1): 232- 241
doi: 10.1109/TGRS.2012.2197682
|
|
|
[16] |
KALKAN K, MAKTAV M D A cloud removal algorithm to generate cloud and cloud shadow free images using information cloning[J]. Journal of the Indian Society of Remote Sensing, 2018, 46 (8): 1255- 1264
doi: 10.1007/s12524-018-0806-y
|
|
|
[17] |
MELGANI F Contextual reconstruction of cloud-contaminated multitemporal multispectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44 (2): 442- 455
doi: 10.1109/TGRS.2005.861929
|
|
|
[18] |
ZHU X, GAO F, LIU D, et al A modified neighborhood similar pixel interpolator approach for removing thick clouds in Landsat images[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9 (3): 521- 525
doi: 10.1109/LGRS.2011.2173290
|
|
|
[19] |
MENG Q, BORDERS B E, CIESZEWSKI C J, et al Closest spectral fit for removing clouds and cloud shadows[J]. Photogrammetric Engineering and Remote Sensing, 2009, 75 (5): 569- 576
doi: 10.14358/PERS.75.5.569
|
|
|
[20] |
ZHANG Q, YUAN Q, ZENG C, et al Missing data reconstruction in remote sensing image with a unified spatial-temporal-spectral deep convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56 (8): 4274- 4288
doi: 10.1109/TGRS.2018.2810208
|
|
|
[21] |
ZHANG Q, YUAN Q, LI J, et al Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 148- 160
doi: 10.1016/j.isprsjprs.2020.02.008
|
|
|
[22] |
ZHANG L, ZHANG M, SUN X, et al Cloud removal for hyperspectral remotely sensed images based on hyperspectral information fusion[J]. International Journal of Remote Sensing, 2018, 39 (20): 6646- 6656
doi: 10.1080/01431161.2018.1466068
|
|
|
[23] |
XU T, GAO X, YANG Y, et al Construction of a semantic segmentation network for the overhead catenary system point cloud based on multi-scale feature fusion[J]. Remote Sensing, 2022, 14 (12): 2768
doi: 10.3390/rs14122768
|
|
|
[24] |
郭承乾, 马刚, 梅江洲, 等 基于InSAR与多源数据融合的堆石坝外观变形重构[J]. 浙江大学学报: 工学版, 2022, 56 (2): 347- 355 GUO Chengqian, MA Gang, MEI Jiangzhou, et al Exterior deformation reconstruction of rockfill dam based on InSAR and multi-source data fusion[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (2): 347- 355
|
|
|
[25] |
GROHNFELDT C, SCHMITT M, ZHU X. A conditional generative adversarial network to fuse SAR and multispectral optical data for cloud removal from Sentinel-2 images [C]// IEEE International Geoscience and Remote Sensing Symposium . Valencia: IEEE, 2018: 1726–1729.
|
|
|
[26] |
WANG Y, ZHANG B, ZHANG W, et al Cloud removal with SAR-optical data fusion using a unified spatial-spectral residual network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5600820
|
|
|
[27] |
LIU Y, WANG X, WANG L, et al A modified leaky ReLU scheme (MLRS) for topology optimization with multiple materials[J]. Applied Mathematics and Computation, 2019, 352: 188- 204
doi: 10.1016/j.amc.2019.01.038
|
|
|
[28] |
CHEN L, CHU X, ZHANG X, et al. Simple baselines for image restoration [C]// European Conference on Computer Vision . Tel Aviv: Springer, 2022: 17–33.
|
|
|
[29] |
EBEL P, XU Y, SCHMITT M, et al SEN12MS-CR-TS: a remote sensing data set for multi-modal multi-temporal cloud removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1- 14
|
|
|
[30] |
LI Z, SHEN H, LI H, et al Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery[J]. Remote Sensing of Environment, 2017, 191: 342- 358
doi: 10.1016/j.rse.2017.01.026
|
|
|
[31] |
CHEN L, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// European Conference on Computer Vision . Munich: Springer, 2018: 801–818.
|
|
|
[32] |
LOSHCHILOV I, HUTTER F. SGDR: stochastic gradient descent with warm restarts [EB/OL]. (2017–05–03)[2025–03–13]. https://arxiv.org/abs/1608.03983.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|