|
|
Identification of apple leaf diseases based on MA-ConvNext network and stepwise relational knowledge distillation |
Huan LIU1( ),Yunhong LI1,*( ),Leitao ZHANG1,Yue GUO2,Xueping SU1,Yaolin ZHU1,Lele HOU1 |
1. School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China 2. School of Life Science, Shanxi University, Taiyuan 030031, China |
|
|
Abstract The backgrounds are cluttered, the spot sizes of apple leaf disease are varying in complex environments, and the existing models have the problems of multiple parameters and a large amount of calculation. Thus, an apple leaf disease recognition network, ConvNext network based on attention and multiscale feature fusion (MA-ConvNext), was proposed. A multiscale spatial reconstruction and channel reconstruction block (MSCB) and a feature extraction block with triplet attention fusion (TAFB) were utilized to effectively extract the features at different scales and enhance the focus on leaf disease spots. Additionally, a stepwise relational knowledge distillation method was employed to fuse the "teacher" network (MA-ConvNext) with an "intermediate" network (DenseNet121) to guide the training of the "student" network (EfficientNet-B0) and achieve the model lightweighting. Experimental results showed that MA-ConvNext achieved a recognition accuracy of 99.38%, improving by 3.98 percentage points, 7.55 percentage points and 4.27 percentage points compared to ResNet50, MobileNet-V3, and EfficientNet-V2 networks, respectively. After the stepwise relational knowledge distillation, the recognition accuracy further improved by 1.76 percentage points, with a smaller network size and parameters of 1.56×107 and 5.29×106. respectively. The proposed method offers new insights and technical support for the precise detection of pests and diseases in agriculture.
|
Received: 10 May 2024
Published: 30 August 2024
|
|
Fund: 国家自然科学基金资助项目(62203344);陕西省自然科学基础研究重点资助项目(2022JZ-35);陕西高校青年创新团队资助项目. |
Corresponding Authors:
Yunhong LI
E-mail: huanlabc@163.com;hitliyunhong@163.com
|
基于MA-ConvNext网络和分步关系知识蒸馏的苹果叶片病害识别
针对复杂环境下苹果叶片病害图像背景杂乱、病斑大小不一,以及现有模型参数多、计算量大的问题,提出基于注意力和多尺度特征融合的苹果叶片病害识别网络(MA-ConvNext). 通过引入多尺度空间通道重组块(MSCB)和融合三分支注意力机制的特征提取模块(TAFB),有效提取苹果叶片病害图像不同尺度的特征,增强模型对叶片病斑的关注. 采用分步关系知识蒸馏方法,将“教师”网络(MA-ConvNext)和“中间”网络(DenseNet121)融合,指导“学生”网络(EfficientNet-B0)训练,实现模型轻量化. 实验结果表明,MA-ConvNext网络识别准确率为99.38%,较ResNet50、MobileNet-V3和EfficientNet-V2网络分别提高了3.98个百分点、7.55个百分点和4.27个百分点. 经过分步关系知识蒸馏后,识别准确率较蒸馏前提高了1.76个百分点,并且具有更小的网络规模和参数量,分别为1.56×107、5.29×106. 所提方法能为后续精准农业的病虫害检测提供新思路和技术支持.
关键词:
苹果叶片病害识别,
注意力,
多尺度特征融合,
分步关系,
知识蒸馏
|
|
[1] |
翟肇裕, 曹益飞, 徐焕良, 等 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52 (7): 1- 18 ZHAI Zhaoyu, CAO Yifei, XU Huanliang, et al Review of key techniques for crop disease and pest detection[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (7): 1- 18
|
|
|
[2] |
孟子恒, 朱海燕, 刘学忠 农业产业集聚对农业经济增长的影响研究: 基于苹果产业的实证分析[J]. 中国农业资源与区划, 2022, 43 (2): 231- 239 MENG Ziheng, ZHU Haiyan, LIU Xuezhong Research on the impact of agricultural industry agglomeration on agricultural economic growth: an empirical analysis based on apple industry[J]. China Agricultural Resources and Zoning, 2022, 43 (2): 231- 239
|
|
|
[3] |
岳喜申 深度学习在农作物病害识别中的研究进展[J]. 安徽农学通报, 2024, 30 (6): 100- 103 YUE Xishen Research progress of deep learning in crop disease identification[J]. Anhui Agricultural Bulletin, 2024, 30 (6): 100- 103
|
|
|
[4] |
盛帅, 段先华, 胡维康, 等. Dynamic-YOLOX: 复杂背景下的苹果叶片病害检测模型[J]. 计算机科学与探索, 2024, 18(8): 2118−2129. SHENG Shuai, DUAN Xianhua, HU Weikang, et al. Dynamic-YOLOX: apple leaf disease detection model under complex background [J]. Computer Science and Exploration , 2024, 18(8): 2118−2129.
|
|
|
[5] |
李佼隆. 基于LeafGAN的数据增强及木薯叶片病害分类识别系统研究[D]. 雅安: 四川农业大学, 2023. LI Jiaolong. Research on data enhancement and cassava leaf disease classification and identification system based on LeafGAN [D]. Yaan: Sichuan Agricultural University, 2023.
|
|
|
[6] |
李云红, 张蕾涛, 李丽敏, 等 基于CycleGAN-IA方法和M-ConvNext网络的苹果叶片病害图像识别[J]. 农业机械学报, 2024, 55 (4): 204- 212 LI Yunhong, ZHANG Leitao, LI Limin, et al Apple leaf disease image recognition based on CycleGAN-IA method and M-ConvNet network[J]. Journal of Agricultural Machinery, 2024, 55 (4): 204- 212
|
|
|
[7] |
ZHANG Y, HUANG S, ZHOU G, et al Identification of tomato leaf diseases based on multi-channel automatic orientation recurrent attention network[J]. Computers and Electronics in Agriculture, 2023, 205: 107605
doi: 10.1016/j.compag.2022.107605
|
|
|
[8] |
HAQUE M A, MARWAHA S, ARORA A, et al A lightweight convolutional neural network for recognition of severity stages of maydis leaf blight disease of maize[J]. Frontiers in Plant Science, 2022, 13: 1077568
doi: 10.3389/fpls.2022.1077568
|
|
|
[9] |
MA Z, WANG Y, ZHANG T, et al Maize leaf disease identification using deep transfer convolutional neural networks[J]. International Journal of Agricultural and Biological Engineering, 2022, 15 (5): 187- 195
doi: 10.25165/j.ijabe.20221505.6658
|
|
|
[10] |
YANG L, YU X, ZHANG S, et al GoogLeNet based on residual network and attention mechanism identification of rice leaf diseases[J]. Computers and Electronics in Agriculture, 2023, 204: 107543
doi: 10.1016/j.compag.2022.107543
|
|
|
[11] |
ELFATIMI E, ERVIGIT R, ELFATIMI L Beans leaf diseases classification using mobilenet models[J]. IEEE Access, 2022, 10: 9471- 9482
doi: 10.1109/ACCESS.2022.3142817
|
|
|
[12] |
LEE S H, CHAN C S, WILKIN P, et al. Deep-plant: plant identification with convolutional neural networks [C]// 2015 IEEE International Conference on Image Processing . Quebec City: IEEE, 2015: 452−456.
|
|
|
[13] |
SLADOJEVIC S, ARSENOVIC M, ANDERLA A, et al Deep neural networks based recognition of plant diseases by leaf image classification[J]. Computational Intelligence and Neuroscience, 2016, (1): 1- 11
|
|
|
[14] |
BRAHIMI M, BOUKHALFA K, MOUSSAOUI A Deep learning for tomato diseases: classification and symptoms visualization[J]. Applied Artificial Intelligence, 2017, 31 (4): 299- 315
doi: 10.1080/08839514.2017.1315516
|
|
|
[15] |
FERENTINOS K P Deep learning models for plant disease detection and diagnosis[J]. Computers and Electronics in Agriculture, 2018, 145: 311- 318
doi: 10.1016/j.compag.2018.01.009
|
|
|
[16] |
HASSAN S M, MAJI A K, JASINSKI M, et al Identification of plant-leaf diseases using CNN and transfer-learning approach[J]. Electronics, 2021, 10 (12): 1388
doi: 10.3390/electronics10121388
|
|
|
[17] |
彭玉寒, 李书琴 基于重参数化MobileNetV2的农作物叶片病害识别模型[J]. 农业工程学报, 2023, 39 (17): 132- 140 PENG Yuhan, LI Shuqin Identification model of crop leaf diseases based on re-parameterized MobileNetV2[J]. Journal of Agricultural Engineering, 2023, 39 (17): 132- 140
|
|
|
[18] |
李大华, 仲婷, 王笋, 等 基于改进ShuffleNet v2的轻量化番茄叶片病害识别[J]. 江苏农业科学, 2024, 52 (3): 220- 228 LI Dahua, ZHONG Ting, WANG Sun, et al Identification of light tomato leaf diseases based on improved ShuffleNet v2[J]. Jiangsu Agricultural Sciences, 2024, 52 (3): 220- 228
|
|
|
[19] |
CHEN J, ZHANG D, ZEB A, et al Identification of rice plant diseases using lightweight attention networks[J]. Expert Systems with Applications, 2021, 169: 114514
doi: 10.1016/j.eswa.2020.114514
|
|
|
[20] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition . Columbus: IEEE, 2016: 770−778.
|
|
|
[21] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C ]// IEEE Conference on Computer Vision and Pattern recognition . Columbus: IEEE, 2016: 2818−2826.
|
|
|
[22] |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]// IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 4700−4708.
|
|
|
[23] |
HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenetv3 [C]// IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 1314−1324.
|
|
|
[24] |
TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks [C]// International Conference on Machine Learning . Long Beach: IEEE, 2019: 6105−6114.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|