Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (6): 1111-1119    DOI: 10.3785/j.issn.1008-973X.2023.06.006
    
Joint distribution of wave height and period for short-term wind seas
Yong-liang MA1(),Zhi-yang GAO1,Chao-shuai HAN2,Qing-feng ZUO1,Guo-qing LU1
1. School of Shipping and Naval Architecture, Chongqing Jiaotong University, Chongqing 400074, China
2. School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
Download: HTML     PDF(1626KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new joint distribution model was proposed by using the conditional probability method, and a new expression for the joint probability density function of wave height period was given, in order to accurately describe the joint distribution of wave high and period for short-term wind seas. Only two parameters were contained in the expression, the significant wave height and the mean cross zero period, which facilitated engineering applications. Taking the Pierson-Moscowitz (P-M) spectrum, the Bretschneider spectrum and the measured wave spectrum as the target spectrum, the short-term irregular waves were modelled as a sum of cosinoidal wave components. An empirical distribution of wave high and period was obtained through statistical analysis. The empirical joint distribution was used as the benchmark, and the proposed joint distribution models and five joint distribution models in the existing literature were compared and analyzed. The root-mean-square error was used to evaluate the degree of matching between all models and the empirical distribution. The results of the root-mean-square error indicate that the proposed model is closest to the empirical distribution in the all models. The difference between the models is mainly reflected in the distribution of period. Among all the models, the distribution of period derived from the proposed model is also closest to the empirical distribution. The proposed joint distribution is expressed by an explicit closed-form formula, it can be easily extended to non-Gaussian wave cases according to transform Gaussian methods such as Hermite transform and Rychlic transform.



Key wordswave spectrum      individual wave      distribution of period      joint distribution of wave height and period      short-term wind condition     
Received: 09 November 2022      Published: 30 June 2023
CLC:  P 751  
Fund:  国家自然科学基金资助项目(52001144);重庆市基础研究与前沿探索专项(自然科学基金)面上项目(cstc2019jcyj-msxmX0619);重庆市教育委员会科学技术研究项目(KJQN201900743)
Cite this article:

Yong-liang MA,Zhi-yang GAO,Chao-shuai HAN,Qing-feng ZUO,Guo-qing LU. Joint distribution of wave height and period for short-term wind seas. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1111-1119.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.06.006     OR     https://www.zjujournals.com/eng/Y2023/V57/I6/1111


短期风浪波高周期联合分布研究

为了准确描述短期风浪波高周期的联合分布,采用条件概率方法提出新的联合分布模型,并给出新的波高周期联合概率密度函数表达式. 该表达式仅包含有义波高、平均跨零周期2个参数, 便于工程应用. 以Pierson-Moscowitz (P-M)谱、布氏谱以及实测波浪谱为靶谱,采用余弦波叠加方法模拟短期波浪,统计分析得到波高周期的经验联合分布. 以经验联合分布为基准,对提出的联合分布模型以及现有文献中5种联合分布模型进行对比分析. 采用均方根误差评价所有模型与经验分布的匹配程度. 均方根误差结果表明,在所有模型中所提模型与经验分布最接近. 模型之间的差异,主要体现在周期分布上. 在所有模型中,所提模型导出的周期分布与经验分布最接近. 所提模型采用显式闭合公式表示,可采用Hermite变换、Rychlic变换,将该模型推广到非高斯波浪情况.


关键词: 波浪谱,  单个波,  周期分布,  波高周期联合分布,  短期海况 
Fig.1 Flow chart of joint probability density function of wave height and period based on wave spectrum
Fig.2 Comparison of root mean square error for each model (P-M spectrum)
模型 RMSE
${H_{{\rm{s}}} }$=0.5 m ${H_{{\rm{s}}} }$=3 m ${H_{{\rm{s}}} }$=8 m ${H_{{\rm{s}}} }$=14 m
CNEXO 0.368 3 0.025 1 0.005 8 0.002 5
L-H 1983 0.222 5 0.015 1 0.003 5 0.001 5
孙孚 0.219 6 0.014 9 0.003 4 0.001 5
L-H 1983-Zheng 0.249 9 0.017 0 0.003 9 0.001 7
孙孚-Zheng 0.251 6 0.017 1 0.003 9 0.001 7
本研究 0.157 0 0.012 1 0.003 0 0.001 3
Tab.1 Root mean square error values of each model (P-M spectrum)
Fig.3 Comparison of empirical joint distribution of P-M spectrum simulation with joint distribution of each theoretical model (probability density values are 0.001, 0.010, 0.030, 0.060 in order from outside to inside)
Fig.4 Comparison of period probability distribution of P-M spectrum simulation with period distribution of each model
模型 RMSE
${T_{ {\rm{p} } } }$=3 s ${T_{{\rm{p}}} }$=6 s ${T_{{\rm{p}}} }$=9 s ${T_{{\rm{p}}} }$=12 s
CNEXO 0.072 3 0.036 2 0.024 1 0.018 1
L-H 1983 0.043 4 0.021 7 0.014 5 0.010 8
孙孚 0.042 8 0.021 4 0.014 3 0.010 7
L-H 1983-Zheng 0.048 6 0.024 3 0.016 2 0.012 2
孙孚-Zheng 0.049 0 0.024 5 0.016 3 0.012 2
本研究 0.029 6 0.016 4 0.011 6 0.009 0
Tab.3 Root mean square error values of each model (Bretschneider spectrum Hs=6 m)
Fig.5 Comparison of root mean square error for each model (Bretschneider spectrum)
模型 RMSE
${T_{{\rm{p}}} }$=0.5 s ${T_{{\rm{p}}} }$=3.5 s ${T_{{\rm{p}}} }$=7.5 s ${T_{{\rm{p}}} }$=12.5 s
CNEXO 2.630 5 0.375 8 0.175 4 0.105 2
L-H 1983 1.588 7 0.227 0 0.105 9 0.063 6
孙孚 1.567 7 0.224 0 0.104 5 0.062 7
L-H 1983-Zheng 1.784 6 0.254 9 0.119 0 0.071 4
孙孚-Zheng 1.796 8 0.256 7 0.119 8 0.071 9
本研究 0.834 5 0.162 4 0.084 5 0.054 3
Tab.2 Root mean square error values of each model (Bretschneider spectrum Hs=0.5 m)
模型 RMSE
${T_{{\rm{p}}} }$=5 s ${T_{{\rm{p}}} }$=9 s ${T_{{\rm{p}}} }$=13 s ${T_{{\rm{p}}} }$=17 s
CNEXO 0.013 0 0.007 2 0.005 0 0.003 8
L-H 1983 0.007 8 0.004 3 0.003 0 0.002 3
孙孚 0.007 7 0.004 3 0.003 0 0.002 3
L-H 1983-Zheng 0.008 7 0.004 9 0.003 4 0.002 6
孙孚-Zheng 0.008 8 0.004 9 0.003 4 0.002 6
本研究 0.005 8 0.003 5 0.002 5 0.002 0
Tab.4 Root mean square error values of each model (Bretschneider spectrum Hs=10 m)
Fig.6 Measured wave spectrum datum of stations
模型 RMSE44066 RMSE42098
18:00 22:00 7:00 8:00
CNEXO 0.044 9 0.032 5 0.087 9 0.073 6
L-H 1983 0.040 5 0.030 9 0.070 2 0.059 1
孙孚 0.040 4 0.030 6 0.070 0 0.058 8
L-H 1983-Zheng 0.032 5 0.027 2 0.073 0 0.059 2
孙孚-Zheng 0.035 3 0.026 6 0.074 2 0.060 6
本研究 0.031 1 0.026 8 0.049 1 0.047 8
Tab.5 Root mean square error values of each model (measured spectrum)
Fig.7 Comparison of empirical joint distribution of measured wave spectrum simulation at 44066 station (18:00) with joint distribution of each model (probability density values are 0.01, 0.10, 0.17, 0.25 in order from outside to inside)
Fig.8 Comparison of period probability distribution of measured wave spectrum simulation (18:00) at 44066 station with probability distribution of each model
[1]   OCHI M K. Ocean wave the stochastic approach [M]. Cambridge: Cambridge university press, 1998.
[2]   ABS. Guide for the fatigue assessment of offshore structures [S]. Houston: American Bureau of Shipping, 2003.
[3]   LONGUET-HIGGINS M S On the joint distribution of the periods and amplitudes of sea waves[J]. Journal of Geophysics Research, 1975, 80 (18): 2688- 2694
doi: 10.1029/JC080i018p02688
[4]   GODA Y. Random Seas and Design of Maritime Structures [M]. London: World Scientific Publishing Co Pte Lts, 2000.
[5]   LONGUET-HIGGINS M S On the joint distribution of wave periods and amplitudes in a random wave field[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1983, 389: 241- 258
[6]   孙孚 海浪周期与波高的联合分布[J]. 海洋学报, 1988, 10 (1): 10- 15
SUN Fu Joint distribution of wave period and wave height[J]. Acta Oceanologica Sinica, 1988, 10 (1): 10- 15
[7]   ZHENG G Z, JIANG X L, HAN S Z The difference between the joint probability distributions of apparent wave heights and periods and individual wave heights and periods[J]. Acta Oceanologica Sinica, 2004, 23 (3): 399- 406
[8]   CAVANIÉ A, ARHAN M, EZRATY R. A statistical relationship between individual heights and periods of storm waves [C]// Behavior of Offshore Structures (BOSS’76). Trondheim: [s.n.], 1976, 354: 235-244.
[9]   EZRATY R, LAURENT M, ARHAN M. Comparison with observation at sea of period or height dependent sea state parameters from a theoretical model [C]// The Ninth Annual of Offshore Technology Conference. Houston: [s.n.], 1977: 149-154.
[10]   潘锦嫦, 陈志宏 海浪波高与周期联合概率密度分布的研究[J]. 海洋通报, 1996, 15 (3): 1- 13
PAN Jin-chang, CHEN Zhi-hong Study of the joint probability density distribution of wave heights and periods[J]. Marine Science Bulletin, 1996, 15 (3): 1- 13
[11]   黄必桂, 金嘉萌, 胡琴, 等 基于实测资料的南海海浪波高和周期联合分布研究[J]. 海洋工程装备与技术, 2017, 4 (4): 187- 192
HUANG Bi-gui, JIN Jia-meng, HU Qin, et al Study on the joint distribution of wave heights and periods in the south China sea based on observed data[J]. Ocean Engineering Equipment and Technology, 2017, 4 (4): 187- 192
[12]   戴仰山, 沈进威, 宋竞正. 船舶波浪载荷[M]. 北京: 国防工业出版社, 2007.
[13]   DNV. Environmental conditions and environmental loads: DNV-RP-C205 [S]. [S.l.]: DNV, 2021.
[14]   IACS. No. 34, Standard wave data [S]. [S.l.]: IACS, 2000.
[15]   俞聿修. 随机波浪及其工程应用[M]. 大连: 大连理工大学出版社, 2003.
[16]   HUDSPETH R T, BORGMAN L E Efficient FFT simulations of digital time sequences[J]. Journal of the Engineering Mechanics Division, 1979, 105 (2): 223- 235
doi: 10.1061/JMCEA3.0002463
[17]   LUTES L D, SARKANI S. Random vibrations analysis of structural and mechanical systems [M]. London: Elsevier Butterworth-Heinemann, 2004.
[18]   SONG X, JIA Y, WANG S, et al A modified straightforward spectral representation method for accurate and efficient simulation of the stationary non-Gaussian stochastic wave[J]. Ocean Engineering, 2020, 205: 107308
doi: 10.1016/j.oceaneng.2020.107308
[19]   RYCHLIK I, JOHANNESSON P, LEADBETTER M R Modelling and statistical analysis of ocean-wave data using transformed Gaussian processes[J]. Marine Structures, 1997, 10 (1): 13- 47
doi: 10.1016/S0951-8339(96)00017-2
[1] Yun-zuo ZHANG,Wei GUO,Zhao-quan CAI,Wen-bo LI. Remote sensing image target detection combining multi-scale and attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2215-2223.
[2] Hao JIANG,Hai-song XU. Histogram based tone mapping algorithm using image segmentation and fusion[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2224-2231.
[3] Kai LI,Yu-shun LIN,Xiao-lin WU,Fei-yu LIAO. Small target vehicle detection based on multi-scale fusion technology and attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2241-2250.
[4] Yong-qiang GE,Chen CAO,Jia-wang CHEN,Chun-ying XU,Peng ZHOU,Feng GAO,Tao LIANG,Yu-ping FANG. In-situ monitoring device for seabed terrain deformation based on MEMS sensor array[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1732-1739.
[5] Ze-kang WU,Shan ZHAO,Hong-wei LI,Yi-rui JIANG. Spatial global context information network for semantic segmentation of remote sensing image[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 795-802.
[6] Xue-yun CHEN,Jin-han HUANG,Zi-can HU,Sheng-cai CEN. Remote sensing image target detection based on linearly logic vector pattern[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 47-55.
[7] Jia-yi SHEN,Meng KU,Li-zhong WANG. Stability analyses of submarine slopes based on shear band propagation method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1299-1307.
[8] Hui YU,Deng-feng CHAI. Vehicle extraction from remotely sensed images based on rectangle marked point processes[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1741-1748.
[9] Wen-jie ZHOU,Li-zhong WANG,Lv-jun TANG,Zhen GUO,Sheng-jie RUI,Yu-pei HUANG. Numerical analysis of dynamic responses of jacket supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1431-1437.
[10] Gui-ran HE,Qi LI,Hua-jun FENG,Zhi-hai XU,Yue-ting CHEN. Dual-focal camera continuous digital zoom based onCNN and feature extraction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1182-1189.
[11] Xiao-bo LAI,Xue-qun ZHANG,Mao-sheng XU. Automated segmentation for multi-modal magnetic resonance image of glioblastoma multiforme[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 355-363.
[12] Yan-ling TANG,Lu-di XU,Zhi-guo HE,Bao-de CHEN,Jie XU,Li LI. Numerical simulation of three-dimensional characteristics of tidal current and residual current in Yangshan Harbor[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 315-324.
[13] JIANG Bo, XIE Lun, LIU Xin, HAN Jing, WANG Zhi-liang. Micro-expression spotting using optical flow magnitude estimation[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 577-583.
[14] ZHANG Jian ting,ZHANG Li min. Image segmentation using novel adaptive robust bilateral filter[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1703-1710.
[15] WEN Nu,YANG Shi-zhi,CUI Sheng-cheng. High resolution remote sensing image denoising based on Curvelet-Wavelet transform[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 79-86.