|
|
Remote sensing image target detection based on linearly logic vector pattern |
Xue-yun CHEN( ),Jin-han HUANG( ),Zi-can HU,Sheng-cai CEN |
School of Electrical Engineering, Guangxi University, Nanning 530000, China |
|
|
Abstract Linear logic vector pattern features were proposed aiming at the shortcomings of local line pattern (LLP) in target detection of remote sensing images, such as high dimension and no connection between adjacent pixels. The pixels used for threshold comparison were selected by sampling in two mutually perpendicular directions, and the feature dimension was reduced by using the principle of logical vector transformation. A central based linear logic vector pattern (LLVP (C)) was proposed by constructing the relationship between the center pixel and the sampling point through the threshold function. An improved based linear logic vector pattern (LLVP (A)) was proposed by connecting the information between the adjacent pixels through the threshold comparison pattern of the adjacent points. A new LLVP was proposed based on the bit wise logical fusion of LLVP (C) and LLVP (A) in order to combine the center and adjacent feature information. The experiment of vehicle, tree and building detection on remote sensing image database shows that LLVP is obviously better than other improved LBP features. LLVP features can achieve high precision and wide adaptability with short training time.
|
Received: 25 February 2021
Published: 05 January 2022
|
|
Fund: 国家自然科学基金资助项目(62061002) |
基于线性逻辑矢量模式的遥感图像目标检测
针对局部线性模式(LLP)在遥感图像目标检测中存在维度较高及没有考虑相邻像素间联系的缺点,提出线性逻辑矢量模式特征. 通过在2条互相垂直的方向上进行采样,选取出用于阈值比较的像素点,利用逻辑矢量变换的原理进行特征降维. 通过阈值函数构建中心像素与采样点间的联系,提出基于中心的线性逻辑矢量模式特征(LLVP(C)),通过相邻点阈值比较模式联系相邻像素间的信息提出变型(LLVP(A)). 为了糅合中心与相邻这2类特征信息,提出对LLVP(C)和LLVP(A)进行按位的逻辑融合得到新的LLVP. 在遥感图像数据库上进行车辆、树木及建筑物的检测实验表明,LLVP优于其他的改进型LBP特征,表明应用LLVP特征再进行检测能够以较短的训练时长达到高精度及广适应性的双重标准.
关键词:
遥感检测,
逻辑矢量变换,
二值模式,
纹理特征,
逻辑融合
|
|
[1] |
WANG Y Q, LEI M A, TIAN Y State-of-the-art of ship detection and recognition in optical remotely sensed imagery[J]. Acta Automatica Sinica, 2011, 37 (9): 1029- 1039
|
|
|
[2] |
WANG X , BAN Y , GUO H, et al. Deep learning model for target detection in remote sensing images fusing multilevel features [C]// 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019.
|
|
|
[3] |
刘丽, 赵凌君, 郭承玉, 等 图像纹理分类方法研究进展和展望[J]. 自动化学报, 2018, 44 (4): 584- 607 LIU Li, ZHAO Ling-jun, GUO Cheng-yu, et al Research progress and prospect of image texture classification[J]. Acta Automatica Sinica, 2018, 44 (4): 584- 607
|
|
|
[4] |
OJALA T, PIETIKAINEN M, HARWOOD D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions[C]// Proceedings of 12th International Conference on Pattern Recognition. Jerusalem: IEEE, 1994.
|
|
|
[5] |
OJALA T, PIETIKAINEN M, HARWOOD D A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition, 1996, 29 (1): 51- 59
doi: 10.1016/0031-3203(95)00067-4
|
|
|
[6] |
TAN X Y, TRIGGS B Enhanced local texture feature sets for face recognition under difficult lighting conditions[J]. IEEE Transactions on Image Processing, 2010, 19 (6): 1635- 1650
doi: 10.1109/TIP.2010.2042645
|
|
|
[7] |
HEIKKILA M, PIETIKAINEN M, SCHMID C Description of interest regions with local binary patterns[J]. Pattern Recognition, 2009, 42 (3): 425- 436
doi: 10.1016/j.patcog.2008.08.014
|
|
|
[8] |
BABER J, BAKHTYAR M, ULLAH I, et al Effective compression of center symmetric local binary pattern[J]. Mehran University Research Journal of Engineering and Technology, 2017, 36 (2): 209- 224
|
|
|
[9] |
陈家华, 陈雪云, 阳理理 基于局部线段模式特征的城市道路视觉检测[J]. 广西大学学报: 自然科学版, 2018, 43 (6): 2206- 2215 CHEN Jia-hua, CHEN Xue-yun, YANG Li-li Urban road visual inspection based on local line pattern features[J]. Journal of Guangxi University: Natural Science Edition, 2018, 43 (6): 2206- 2215
|
|
|
[10] |
OJALA T, PIETIKAINEN M, MAENPAA T Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (7): 971- 987
doi: 10.1109/TPAMI.2002.1017623
|
|
|
[11] |
李安然, 陈雪云 一种基于矢量变换的局部二值化模式分类方法[J]. 广西大学学报:自然科学版, 2020, 45 (3): 490- 503 LI An-ran, CHEN Xue-yun A local binary pattern classification method based on vector transformation[J]. Journal of Guangxi University: Natural Science Edition, 2020, 45 (3): 490- 503
|
|
|
[12] |
郭寅, 尹仕斌, 崔鹏飞, 等. 改进的LBP特征提取方法: CN111862178A [P]. 2020-10-30. GUO Yin, YIN Shi-bin, CUI Peng-fei, et al. Improved LBP feature extraction method: CN111862178A [P]. 2020-10-30.
|
|
|
[13] |
LIU X, XUE F, TENG L. Surface defect detection based on gradient LBP [C]// 2018 IEEE 3rd International Conference on Image, Vision and Computing. Chongqing: IEEE, 2018.
|
|
|
[14] |
BRODERSEN K H, CHENG S O, STEPHAN K E, et al. The binormal assumption on precision-recall curves [C]// International Conference on Pattern Recognition. Turkey: IEEE, 2010.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|