1. Institute of Advanced Manufacturing and Intelligent Technology, Beijing University of Technology, Beijing 100020, China 2. Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100020, China 3. Machinery Industry Key Laboratory of Heavy Machine Tool Digital Design and Testing Technology, Beijing University of Technology, Beijing 100020, China
Aiming at the problem of passive adjustment of traditional docking methods without the support of field measured data, the optimization feedback control technology of fuselage docking process was studied based on the digital twin virtual reality combination technology. A digital twin system integrating the redundant control algorithm and the process optimization strategy was built. The process of measurement-optimization-feedback accuracy optimization based on field measured data was clarified. The digital twin model was accurately reconstructed based on the finite-state machine theory. The monitoring and precision prediction of docking process were realized. The secondary design of process parameters was completed according to the coaxiality evaluation index. The optimized process parameters were redistributed to the physical site to control the on-site docking process. The comparison of the docking position and attitude deviation showed that the optimal control method of the docking accuracy reduced the position deviation of the fuselage barrel by 60.03% and the attitude deviation by 53.94%.
Yong-sheng ZHAO,Zhi-yong ZHAO,Ying LI,Tao ZHANG. Optimal control method of fuselage docking accuracy based on digital twin. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 883-891.
Fig.1Fuselage docking system based on digital twin
Fig.2Multi station redundant measurement network
Fig.3Precise reconstruction of digital twin model
Fig.4Aircraft docking accuracy optimization process based on digital twin
Fig.5Docking control platform coordinate system
Fig.6Interactive system of fuselage barrel butt joint based on digital twin
Fig.7Butt joint assembly site of fuselage barrel
序号
$X$/mm
$Y$/mm
$Z$/mm
1
373.555
214.014
?283.830
2
323.193
489.961
181.887
3
223.150
1027.714
174.355
4
169.474
1276.241
?301.373
5
?39.473
136.544
?283.939
6
?85.010
403.496
181.617
7
?187.961
936.987
183.871
8
?242.197
1195.985
?275.965
Tab.1Coordinates of fixed barrel section before docking
序号
$X$/mm
$Y$/mm
$Z$/mm
1
?165.008
111.734
?298.051
2
?186.030
242.148
51.455
3
?309.740
903.813
168.885
4
?368.699
1138.559
?122.273
5
?1267.995
?92.702
?288.938
6
?1315.942
174.049
176.233
7
?1413.406
710.535
163.508
8
?1464.478
978.906
?294.405
Tab.2Coordinates of fuselage barrel section before docking
序号
$X$/mm
$Y$/mm
$Z$/mm
1
?67.851
134.420
?272.060
2
?86.006
268.002
76.409
3
?208.747
930.715
188.840
4
?270.093
1162.814
?103.943
5
?1170.726
?69.842
?252.045
6
?1214.856
201.168
211.063
7
?1312.421
737.478
194.271
8
?1367.247
1001.686
?265.625
Tab.3Coordinates of fuselage barrel section after docking
Fig.8Comparison of posture deviation of fuselage barrel butt joint
[1]
梅中义, 黄超, 范玉青 飞机数字化装配技术发展与展望[J]. 航空制造技术, 2015, 18: 32- 37 MEI Zhong-yi, HUANG Chao, FAN Yu-qing Development and prospect of the aircraft digital assembly technology[J]. Aeronautical Manufacturing Technology, 2015, 18: 32- 37
[2]
文科, 杜福洲, 张铁军, 等 舱段类部件数字化柔性对接系统设计与试验研究[J]. 航空制造技术, 2017, 60 (11): 24- 31 WEN Ke, DU Fu-zhou, ZHANG Tie-jun, et al Research on design and experiment for digital flexible aligning system of cabin components[J]. Aeronautical Manufacturing Technology, 2017, 60 (11): 24- 31
[3]
许国康 大型飞机自动化装配技术[J]. 航空学报, 2008, 29 (3): 734- 740 XU Guo-kang Automatic assembly technology for large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29 (3): 734- 740
[4]
GUO Jun-kang, LI Bao-tong, LIU Zhi-gang, et al Integration of geometric variation and part defor-mation into variation propagation of 3D assem-blies[J]. International Journal of Production Research, 2016, 54 (19): 5708- 5721
doi: 10.1080/00207543.2016.1158881
[5]
XU Song-gang, JOHN K Statistical geometric computation on tolerances for dimensioning[J]. Computer Aided Design, 2016, 70 (1): 193- 201
[6]
郭俊康, 李宝童, 洪军, 等 基于误差状态最优估计的精密机床装配调整工艺决策[J]. 机械工程学报, 2020, 56 (11): 172- 180 GUO Jun-kang, LI Bao-tong, HONG Jun, et al Assembly adjustment process planning of preci-sion machine tools based on optimal estimation of variation propagation[J]. Journal of Mechanical Engineering, 2020, 56 (11): 172- 180
doi: 10.3901/JME.2020.11.172
[7]
赵欢, 葛东升, 罗来臻, 等. 大型构件自动化柔性对接装配技术综述 [J/OL]. 机械工程学报, 2022, 58: 1–21. http://kns.cnki.net/kcms/detail/11.2187.TH.20220527.1104.039.html. ZHAO Huan, GE Dong-sheng, LUO Lai-zhen, et al. Survey of automated flexible docking assembly technology for large-scale components [J/OL]. Journal of Mechanical Engineering, 2022, 58: 1–21. http://kns.cnki.net/kcms/detail/11.2187.TH.20220527.1104.039.html.
[8]
孙惠斌, 颜建兴, 魏小红, 等 数字孪生驱动的航空发动机装配技术[J]. 中国机械工程, 2020, 31 (7): 833- 841 SUN Hui-bin, YAN Jian-xing, WEI Xiao-hong, et al Digital twin-driven aero-engine assembly technology[J]. China Mechanical Engineering, 2020, 31 (7): 833- 841
[9]
LU Y, LIU C, KEVIN I, et al Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues[J]. Robotics and Computer Integrated Manufacturing, 2020, 61: 101837
doi: 10.1016/j.rcim.2019.101837
[10]
姜珊, 王仲奇, 夏松, 等 飞机柔性工装数字孪生几何模型构建方法[J]. 航空制造技术, 2022, 65 (12): 86- 91 JIANG Shan, WANG Zhong-qi, XIA Song, et al Construction method of digital twin geometry mo-del for aircraft flexible tooling[J]. Aeronautical Manufacturing Technology, 2022, 65 (12): 86- 91
[11]
张玉良, 张佳朋, 王小丹, 等 面向航天器在轨装配的数字孪生技术[J]. 导航与控制, 2018, 17 (3): 75- 82 ZHANG Yu-liang, ZHANG Jia-peng, WANG Xiao-dan, et al Digital twin technology for spacecraft on-orbit assembly[J]. Navigation and Control, 2018, 17 (3): 75- 82
[12]
张入元, 武殿梁, 黄顺舟 基于数字孪生的总装对接在线监控技术[J]. 组合机床与自动化加工技术, 2021, (11): 109- 113 ZHANG Ru-yuan, WU Dian-liang, HUANG Shun-zhou Online monitoring technology of final assembly docking based on digital twin[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2021, (11): 109- 113
[13]
张瀚丹, 李康康, 杨豫鹏, 等 基于数字孪生的雕刻机人机交互系统设计[J]. 计算机测量与控制, 2021, 29 (10): 170- 175 ZHANG Han-dan, LI Kang-kang, YANG Yu-peng, et al Design of human-machine interaction system for engraving machine based on digital twin[J]. Computer Measurement and Control, 2021, 29 (10): 170- 175
[14]
孙学民, 刘世民, 申兴旺, 等 数字孪生驱动的高精密产品智能化装配方法[J]. 计算机集成制造系统, 2022, 28 (6): 1704- 1716 SUN Xue-min, LIU Shi-min, SHEN Xing-wang, et al Digital twin-driven intelligent assembly method for high precision products[J]. Computer Integrated Manufacturing Systems, 2022, 28 (6): 1704- 1716
[15]
黄郁雯, 李培勇, 唐正, 等 基于数字孪生的船体分段装配规划研究[J]. 武汉理工大学学报: 交通科学与工程版, 2022, 46 (5): 878- 882 HUAGN Yu-wen, LI Pei-yong, TAGN Zheng, et al Ship block structure assembly planning based on digital twin[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2022, 46 (5): 878- 882
[16]
易扬, 冯锦丹, 刘金山, 等 复杂产品数字孪生装配模型表达与精度预测[J]. 计算机集成制造系统, 2021, 27 (2): 617- 630 YI Yang, FENG Jin-dan, LIU Jin-shan, et al Model expression and accuracy prediction method of digital twin-based assembly for complex products[J]. Computer Integrated Manufacturing Systems, 2021, 27 (2): 617- 630
[17]
李新, 李飞, 方世巍, 等 基于UE4的井下变电所巡检机器人数字孪生系统[J]. 煤矿安全, 2021, 52 (11): 130- 133 LI Xin, LI Fei, FANG Shi-wei, et al Digital twin system of inspection robot in underground substation based on UE4[J]. Safety in Coal Mines, 2021, 52 (11): 130- 133
[18]
郭飞燕, 刘检华, 邹方, 等 数字孪生驱动的装配工艺设计现状及关键实现技术研究[J]. 机械工程学报, 2019, 55 (17): 110- 132 GUO Fei-yan, LIU Jian-hua, ZOU Fang, et al Research on the state-of-art, connotation and key implementation technology of assembly process planning with digital twin[J]. Journal of Mechanical Engineering, 2019, 55 (17): 110- 132
doi: 10.3901/JME.2019.17.110
[19]
陶飞, 张萌, 程江峰, 等 数字孪生车间: 一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23 (1): 1- 9 TAO Fei, ZHANG Meng, CHENG Jiang-feng, et al Digital twin workshop: a new paradigm for future workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23 (1): 1- 9
[20]
赵建国, 台春雷, 刘哲, 等 飞机装配大尺寸多系统测量场构建及应用[J]. 航空制造技术, 2022, 65 (5): 63- 67 ZHAO Jian-guo, TAI Chun-lei, LIU Zhe, et al Establishment and application of large-volume multi-system measurement field for aircraft assembly[J]. Aeronautical Manufacturing Technology, 2022, 65 (5): 63- 67
[21]
GUO Fei-yan, ZOU Fang, LIU Jian-hua, et al Comprehensive identification of aircraft coordina-tion feature based on complete importance modeling and its engineering application[J]. Assembly Automation, 2018, 38 (4): 398- 411
doi: 10.1108/AA-10-2017-139
[22]
PETER M, LAN E. 基于FSM和Verilog HDL的数字电路设计[M]. 姚世扬, 译. 北京: 机械工业出版社, 2016: 1–15.
[23]
陈哲涵, 杜福洲, 唐晓青 基于关键测量特性的飞机装配检测数据建模研究[J]. 航空学报, 2012, 33 (11): 2143- 2152 CHEN Zhe-han, DU Fu-zhou, TANG Xiao-qing Key measurement haracteristics based inspection data modeling for aircraft assembly[J]. Acta Aero-nautica et Astronautica Sinica, 2012, 33 (11): 2143- 2152
[24]
洪军, 郭俊康, 刘志刚, 等 基于状态空间模型的精密机床装配精度预测与调整工艺[J]. 机械工程学报, 2013, 49 (6): 114- 121 HONG Jun, GUO Jun-kang, LIU Zhi-gang, et al Assembly accuracy prediction and adjustment process modeling of precision machine tool based on state space model[J]. Journal of Mechanical Engineering, 2013, 49 (6): 114- 121
doi: 10.3901/JME.2013.06.114
[25]
王思知, 刘伦乾, 朱春伟, 等 机身装配中自动定位器调姿算法研究[J]. 机电工程术, 2019, 48 (7): 63- 67 WANG Si-zhi, LIU Lun-qian, ZHU Chun-wei, et al Research on positioning algorithm of automatic positioner in fuselage assembly[J]. Mechanical and Electrical Engineering Technology, 2019, 48 (7): 63- 67