Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (5): 883-891    DOI: 10.3785/j.issn.1008-973X.2023.05.004
    
Optimal control method of fuselage docking accuracy based on digital twin
Yong-sheng ZHAO1,2(),Zhi-yong ZHAO1,2,Ying LI1,3,Tao ZHANG1,3
1. Institute of Advanced Manufacturing and Intelligent Technology, Beijing University of Technology, Beijing 100020, China
2. Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100020, China
3. Machinery Industry Key Laboratory of Heavy Machine Tool Digital Design and Testing Technology, Beijing University of Technology, Beijing 100020, China
Download: HTML     PDF(1631KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problem of passive adjustment of traditional docking methods without the support of field measured data, the optimization feedback control technology of fuselage docking process was studied based on the digital twin virtual reality combination technology. A digital twin system integrating the redundant control algorithm and the process optimization strategy was built. The process of measurement-optimization-feedback accuracy optimization based on field measured data was clarified. The digital twin model was accurately reconstructed based on the finite-state machine theory. The monitoring and precision prediction of docking process were realized. The secondary design of process parameters was completed according to the coaxiality evaluation index. The optimized process parameters were redistributed to the physical site to control the on-site docking process. The comparison of the docking position and attitude deviation showed that the optimal control method of the docking accuracy reduced the position deviation of the fuselage barrel by 60.03% and the attitude deviation by 53.94%.



Key wordsdigital twin      fuselage docking      model reconstruction      parameter optimization      optimal control     
Received: 21 September 2022      Published: 09 May 2023
CLC:  V 264.2  
Fund:  国家自然科学基金资助项目(52075012)
Cite this article:

Yong-sheng ZHAO,Zhi-yong ZHAO,Ying LI,Tao ZHANG. Optimal control method of fuselage docking accuracy based on digital twin. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 883-891.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.05.004     OR     https://www.zjujournals.com/eng/Y2023/V57/I5/883


基于数字孪生的机身对接精度优化控制方法

针对传统对接方法在缺少现场实测数据支持下的被动调整问题,提出基于数字孪生的机身对接精度优化控制方法.基于数字孪生虚实结合技术,研究机身对接工艺优化反馈控制技术. 搭建融合冗余控制算法和工艺优化策略的数字孪生系统,明确了基于现场实测数据的测量-优化-反馈精度优化流程. 基于有限状态机理论,精准重建数字孪生模型,实现对接过程的监控和精度预测,根据同轴度评价指标完成工艺参数二次设计,将优化后的工艺参数重新下发至物理现场、控制现场进行对接. 对接位姿偏差对比结果表明:对接精度优化控制方法将机身筒段位置偏差降低了60.03%,姿态偏差降低了53.94%.


关键词: 数字孪生,  机身对接,  模型重构,  参数优化,  优化控制 
Fig.1 Fuselage docking system based on digital twin
Fig.2 Multi station redundant measurement network
Fig.3 Precise reconstruction of digital twin model
Fig.4 Aircraft docking accuracy optimization process based on digital twin
Fig.5 Docking control platform coordinate system
Fig.6 Interactive system of fuselage barrel butt joint based on digital twin
Fig.7 Butt joint assembly site of fuselage barrel
序号 $X$/mm $Y$/mm $Z$/mm
1 373.555 214.014 ?283.830
2 323.193 489.961 181.887
3 223.150 1027.714 174.355
4 169.474 1276.241 ?301.373
5 ?39.473 136.544 ?283.939
6 ?85.010 403.496 181.617
7 ?187.961 936.987 183.871
8 ?242.197 1195.985 ?275.965
Tab.1 Coordinates of fixed barrel section before docking
序号 $X$/mm $Y$/mm $Z$/mm
1 ?165.008 111.734 ?298.051
2 ?186.030 242.148 51.455
3 ?309.740 903.813 168.885
4 ?368.699 1138.559 ?122.273
5 ?1267.995 ?92.702 ?288.938
6 ?1315.942 174.049 176.233
7 ?1413.406 710.535 163.508
8 ?1464.478 978.906 ?294.405
Tab.2 Coordinates of fuselage barrel section before docking
序号 $X$/mm $Y$/mm $Z$/mm
1 ?67.851 134.420 ?272.060
2 ?86.006 268.002 76.409
3 ?208.747 930.715 188.840
4 ?270.093 1162.814 ?103.943
5 ?1170.726 ?69.842 ?252.045
6 ?1214.856 201.168 211.063
7 ?1312.421 737.478 194.271
8 ?1367.247 1001.686 ?265.625
Tab.3 Coordinates of fuselage barrel section after docking
Fig.8 Comparison of posture deviation of fuselage barrel butt joint
[1]   梅中义, 黄超, 范玉青 飞机数字化装配技术发展与展望[J]. 航空制造技术, 2015, 18: 32- 37
MEI Zhong-yi, HUANG Chao, FAN Yu-qing Development and prospect of the aircraft digital assembly technology[J]. Aeronautical Manufacturing Technology, 2015, 18: 32- 37
[2]   文科, 杜福洲, 张铁军, 等 舱段类部件数字化柔性对接系统设计与试验研究[J]. 航空制造技术, 2017, 60 (11): 24- 31
WEN Ke, DU Fu-zhou, ZHANG Tie-jun, et al Research on design and experiment for digital flexible aligning system of cabin components[J]. Aeronautical Manufacturing Technology, 2017, 60 (11): 24- 31
[3]   许国康 大型飞机自动化装配技术[J]. 航空学报, 2008, 29 (3): 734- 740
XU Guo-kang Automatic assembly technology for large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29 (3): 734- 740
[4]   GUO Jun-kang, LI Bao-tong, LIU Zhi-gang, et al Integration of geometric variation and part defor-mation into variation propagation of 3D assem-blies[J]. International Journal of Production Research, 2016, 54 (19): 5708- 5721
doi: 10.1080/00207543.2016.1158881
[5]   XU Song-gang, JOHN K Statistical geometric computation on tolerances for dimensioning[J]. Computer Aided Design, 2016, 70 (1): 193- 201
[6]   郭俊康, 李宝童, 洪军, 等 基于误差状态最优估计的精密机床装配调整工艺决策[J]. 机械工程学报, 2020, 56 (11): 172- 180
GUO Jun-kang, LI Bao-tong, HONG Jun, et al Assembly adjustment process planning of preci-sion machine tools based on optimal estimation of variation propagation[J]. Journal of Mechanical Engineering, 2020, 56 (11): 172- 180
doi: 10.3901/JME.2020.11.172
[7]   赵欢, 葛东升, 罗来臻, 等. 大型构件自动化柔性对接装配技术综述 [J/OL]. 机械工程学报, 2022, 58: 1–21. http://kns.cnki.net/kcms/detail/11.2187.TH.20220527.1104.039.html.
ZHAO Huan, GE Dong-sheng, LUO Lai-zhen, et al. Survey of automated flexible docking assembly technology for large-scale components [J/OL]. Journal of Mechanical Engineering, 2022, 58: 1–21. http://kns.cnki.net/kcms/detail/11.2187.TH.20220527.1104.039.html.
[8]   孙惠斌, 颜建兴, 魏小红, 等 数字孪生驱动的航空发动机装配技术[J]. 中国机械工程, 2020, 31 (7): 833- 841
SUN Hui-bin, YAN Jian-xing, WEI Xiao-hong, et al Digital twin-driven aero-engine assembly technology[J]. China Mechanical Engineering, 2020, 31 (7): 833- 841
[9]   LU Y, LIU C, KEVIN I, et al Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues[J]. Robotics and Computer Integrated Manufacturing, 2020, 61: 101837
doi: 10.1016/j.rcim.2019.101837
[10]   姜珊, 王仲奇, 夏松, 等 飞机柔性工装数字孪生几何模型构建方法[J]. 航空制造技术, 2022, 65 (12): 86- 91
JIANG Shan, WANG Zhong-qi, XIA Song, et al Construction method of digital twin geometry mo-del for aircraft flexible tooling[J]. Aeronautical Manufacturing Technology, 2022, 65 (12): 86- 91
[11]   张玉良, 张佳朋, 王小丹, 等 面向航天器在轨装配的数字孪生技术[J]. 导航与控制, 2018, 17 (3): 75- 82
ZHANG Yu-liang, ZHANG Jia-peng, WANG Xiao-dan, et al Digital twin technology for spacecraft on-orbit assembly[J]. Navigation and Control, 2018, 17 (3): 75- 82
[12]   张入元, 武殿梁, 黄顺舟 基于数字孪生的总装对接在线监控技术[J]. 组合机床与自动化加工技术, 2021, (11): 109- 113
ZHANG Ru-yuan, WU Dian-liang, HUANG Shun-zhou Online monitoring technology of final assembly docking based on digital twin[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2021, (11): 109- 113
[13]   张瀚丹, 李康康, 杨豫鹏, 等 基于数字孪生的雕刻机人机交互系统设计[J]. 计算机测量与控制, 2021, 29 (10): 170- 175
ZHANG Han-dan, LI Kang-kang, YANG Yu-peng, et al Design of human-machine interaction system for engraving machine based on digital twin[J]. Computer Measurement and Control, 2021, 29 (10): 170- 175
[14]   孙学民, 刘世民, 申兴旺, 等 数字孪生驱动的高精密产品智能化装配方法[J]. 计算机集成制造系统, 2022, 28 (6): 1704- 1716
SUN Xue-min, LIU Shi-min, SHEN Xing-wang, et al Digital twin-driven intelligent assembly method for high precision products[J]. Computer Integrated Manufacturing Systems, 2022, 28 (6): 1704- 1716
[15]   黄郁雯, 李培勇, 唐正, 等 基于数字孪生的船体分段装配规划研究[J]. 武汉理工大学学报: 交通科学与工程版, 2022, 46 (5): 878- 882
HUAGN Yu-wen, LI Pei-yong, TAGN Zheng, et al Ship block structure assembly planning based on digital twin[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2022, 46 (5): 878- 882
[16]   易扬, 冯锦丹, 刘金山, 等 复杂产品数字孪生装配模型表达与精度预测[J]. 计算机集成制造系统, 2021, 27 (2): 617- 630
YI Yang, FENG Jin-dan, LIU Jin-shan, et al Model expression and accuracy prediction method of digital twin-based assembly for complex products[J]. Computer Integrated Manufacturing Systems, 2021, 27 (2): 617- 630
[17]   李新, 李飞, 方世巍, 等 基于UE4的井下变电所巡检机器人数字孪生系统[J]. 煤矿安全, 2021, 52 (11): 130- 133
LI Xin, LI Fei, FANG Shi-wei, et al Digital twin system of inspection robot in underground substation based on UE4[J]. Safety in Coal Mines, 2021, 52 (11): 130- 133
[18]   郭飞燕, 刘检华, 邹方, 等 数字孪生驱动的装配工艺设计现状及关键实现技术研究[J]. 机械工程学报, 2019, 55 (17): 110- 132
GUO Fei-yan, LIU Jian-hua, ZOU Fang, et al Research on the state-of-art, connotation and key implementation technology of assembly process planning with digital twin[J]. Journal of Mechanical Engineering, 2019, 55 (17): 110- 132
doi: 10.3901/JME.2019.17.110
[19]   陶飞, 张萌, 程江峰, 等 数字孪生车间: 一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23 (1): 1- 9
TAO Fei, ZHANG Meng, CHENG Jiang-feng, et al Digital twin workshop: a new paradigm for future workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23 (1): 1- 9
[20]   赵建国, 台春雷, 刘哲, 等 飞机装配大尺寸多系统测量场构建及应用[J]. 航空制造技术, 2022, 65 (5): 63- 67
ZHAO Jian-guo, TAI Chun-lei, LIU Zhe, et al Establishment and application of large-volume multi-system measurement field for aircraft assembly[J]. Aeronautical Manufacturing Technology, 2022, 65 (5): 63- 67
[21]   GUO Fei-yan, ZOU Fang, LIU Jian-hua, et al Comprehensive identification of aircraft coordina-tion feature based on complete importance modeling and its engineering application[J]. Assembly Automation, 2018, 38 (4): 398- 411
doi: 10.1108/AA-10-2017-139
[22]   PETER M, LAN E. 基于FSM和Verilog HDL的数字电路设计[M]. 姚世扬, 译. 北京: 机械工业出版社, 2016: 1–15.
[23]   陈哲涵, 杜福洲, 唐晓青 基于关键测量特性的飞机装配检测数据建模研究[J]. 航空学报, 2012, 33 (11): 2143- 2152
CHEN Zhe-han, DU Fu-zhou, TANG Xiao-qing Key measurement haracteristics based inspection data modeling for aircraft assembly[J]. Acta Aero-nautica et Astronautica Sinica, 2012, 33 (11): 2143- 2152
[24]   洪军, 郭俊康, 刘志刚, 等 基于状态空间模型的精密机床装配精度预测与调整工艺[J]. 机械工程学报, 2013, 49 (6): 114- 121
HONG Jun, GUO Jun-kang, LIU Zhi-gang, et al Assembly accuracy prediction and adjustment process modeling of precision machine tool based on state space model[J]. Journal of Mechanical Engineering, 2013, 49 (6): 114- 121
doi: 10.3901/JME.2013.06.114
[25]   王思知, 刘伦乾, 朱春伟, 等 机身装配中自动定位器调姿算法研究[J]. 机电工程术, 2019, 48 (7): 63- 67
WANG Si-zhi, LIU Lun-qian, ZHU Chun-wei, et al Research on positioning algorithm of automatic positioner in fuselage assembly[J]. Mechanical and Electrical Engineering Technology, 2019, 48 (7): 63- 67
[1] Yu-xiang XU,Pei-liang WANG,Zhi-duan CAI,Neng-wei LEI,Yong-feng JIANG. Performance optimization of matrix converter based on specific harmonic elimination[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 209-218.
[2] Yong-sheng ZHAO,Rui-xiang LI,Na-na NIU,Zhi-yong ZHAO. Shape control method of fuselage driven by digital twin[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1457-1463.
[3] Chao-jun XUE,Hai-bo WANG,Yu-peng CHEN. Optimal design and experimental study of thrust adsorption wall-climbing robot[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1181-1190, 1198.
[4] Bo-han LENG,Tang-bin XIA,He SUN,Hao WANG,Li-feng XI. Digital twin mapping modeling and method of monitoring and simulation for reconfigurable manufacturing system[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 843-855.
[5] Lin-li LI,Fu GU,Hao LI,Xin-jian GU,Guo-fu LUO,Zhi-qiang WU,Yi-jin GANG. Framework and key technologies of digital twin system cyber security under perspective of bionics[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 419-435.
[6] Xiao-chen SONG,Xiao-fan YAO,Shang-jun YE. Trajectory optimization of small supersonic unmanned aerial vehicle based on pseudo-spectral method[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 193-201.
[7] Zhe-wu CHENG,Shui-guang TONG,Zhe-ming TONG,Qin-guo ZHANG. Review of digital design and digital twin of industrial boiler[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1518-1528.
[8] Miao LIN,Yong-jian JU,Gang MENG,Kun WANG,Yi CAO. Design and optimization of large range 2-DOF micro-positioning clamping system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1234-1244.
[9] Shou-guo ZHENG,Yong-de ZHANG,Wen-tian XIE,Hu FAN,Qing WANG. Aircraft final assembly line modeling based on digital twin[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 843-854.
[10] Yong YU,Jing-yuan XUE,Sheng DAI,Qiang-wei BAO,Gang ZHAO. Quality prediction and process parameter optimization method for machining parts[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 441-447.
[11] Wei-da LI,Juan LI,Xiang LI,Hong-miao ZHANG,Hong GU,Yi-peng SHI,Hao-jie ZHANG,Li-ning SUN. Dynamic analysis and parameter optimization of under-actuated heterogeneous lower limb rehabilitation robot[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 222-228.
[12] Jie LIU,Xian-zhou DONG,Wei HAN,Xin-wei WANG,Chun LIU,Jun JIA. Trajectory planning for carrier aircraft on deck using Newton Symplectic pseudo-spectral method[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1827-1838.
[13] Kai-ming HU,Hua LI. Nonlinear stochastic optimal voltage bounded control for axial compressed beam[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 940-946.
[14] Yong-qiang OUYANG,Xin-yan ZHANG. Design of energy-saving automated storage and retrieval system considering acceleration and deceleration of storage and retrieval machine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1681-1688.
[15] Liang LU,Fei-yan XIA,Yao-bao YIN,Jia-yang YUAN,Sheng-rong GUO. Spool stuck mechanism of ball-type rotary direct drive pressure servo valve[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1265-1273.