Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (1): 209-218    DOI: 10.3785/j.issn.1008-973X.2023.01.021
    
Performance optimization of matrix converter based on specific harmonic elimination
Yu-xiang XU1(),Pei-liang WANG2,*(),Zhi-duan CAI1,Neng-wei LEI1,Yong-feng JIANG2
1. School of Science and Engineering, Huzhou College, Huzhou 313000, China
2. School of Engineering, Huzhou University, Huzhou 313000, China
Download: HTML     PDF(2224KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The specific harmonic near the resonance point of input side was selected as the suppression object aiming at the problem that input LC filter of matrix converter was easy to cause input current resonance. A method of input filter parameter optimization and resonance suppression based on specific harmonic elimination was proposed to improve input performance. The working principle of input LC filter and conventional resonance suppression method was analyzed. Multiple constraints were used to optimize the design of filter parameters. The damping resistance was selected based on the suppression effect of specific harmonics near the resonance point, and the specific optimization design steps were given. The idea of specific harmonic elimination was introduced into the active resonance suppression method, and the strategy of using notch filter to collect the specific harmonic quantity in the filter capacitor and feed it back to the control loop was proposed. The simulation model based on Matlab/Simulink software was constructed. The simulation results showed that the total harmonic distortion of input current was reduced by 98.5% and 99.3% respectively by using the proposed input filter parameter optimization method and active resonance suppression method. The system has good stability after suppression processing.



Key wordsspecific harmonic      matrix converter      parameter optimization      resonance suppression      notch filter     
Received: 14 August 2021      Published: 17 January 2023
CLC:  TM 46  
Fund:  国家自然科学基金资助项目(61573137);浙江省自然科学基金资助项目(LY19F030002);浙江省文化和旅游厅科研与创作项目资助项目(2021KYY066);浙江省建设厅建设科研资助项目(2021K218);湖州市公益性应用研究资助项目(2021GZ15);湖州学院校级科研资助项目(2021HXKJ03)
Corresponding Authors: Pei-liang WANG     E-mail: keyan_xyx@163.com;wpl@zjhu.edu.cn
Cite this article:

Yu-xiang XU,Pei-liang WANG,Zhi-duan CAI,Neng-wei LEI,Yong-feng JIANG. Performance optimization of matrix converter based on specific harmonic elimination. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 209-218.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.01.021     OR     https://www.zjujournals.com/eng/Y2023/V57/I1/209


基于特定谐波消除的矩阵变换器性能优化方法

针对矩阵变换器输入LC滤波器容易引起输入电流谐振的问题,选择输入侧谐振点附近的特定谐波作为抑制对象,提出基于特定谐波消除的输入滤波器参数优化与谐振抑制方法,以提升输入性能. 分析输入LC滤波器及常规谐振抑制方法的工作原理,采用多个约束条件对滤波参数进行最优设计,以谐振点附近特定谐波的抑制效果作为阻尼电阻的选择依据,给出具体的优化设计步骤. 将特定谐波消除的思想引入主动谐振抑制方法中,提出采用陷波滤波器采集滤波电容中特定谐波量反馈到控制回路的策略. 搭建基于Matlab/Simulink的仿真模型,仿真实验表明,利用所提的输入滤波器参数优化方法和主动谐振抑制方法,使得输入电流总谐波畸变率分别下降了98.5%和99.3%. 抑制处理后的系统具有良好的稳定性.


关键词: 特定谐波,  矩阵变换器,  参数优化,  谐振抑制,  陷波滤波器 
Fig.1 Topology of three-phase to three-phase matrix converter
Fig.2 Equivalent circuit diagram of input side of MC
Fig.3 Equivalent circuit diagram of input side based on passive damping method
参数 数值
输入电压幅值Em /V $110\sqrt 2 $
输入电压频率fi /Hz 50
滤波电感Lf /mH 1.5
滤波电感等效电阻Rf 0.075
滤波电容Cf /μF 18.8
输出电流设定值Io* /A 3.5/6.5
输出频率fo /Hz 70
负载电感L /mH 7.5
负载电阻R 20
开关频率fs /kHz 10
Tab.1 Simulation parameters of matrix converter
Io*/A Rd ηi / %
i = 13 i = 17 i = 19 i = 23 i = 25
3.5 10 0.31 0.22 0.03 0.12 0.07
3.5 15 0.49 0.10 0.28 0.13 0.06
3.5 33 0.35 0.19 0.65 0.26 0.07
6.5 10 0.09 0.03 0.05 0.06 0.03
6.5 15 0.10 0.06 0.04 0.05 0.03
6.5 33 0.10 0.15 0.28 0.26 0.10
Tab.2 Harmonic content near resonance point in input current under different damping resistances
Fig.4 Block diagram of specific harmonic extraction module
Fig.5 Block diagram of double closed loop control strategy based on specific harmonic elimination method
Fig.6 Static simulation results under undamped method
Fig.7 Static simulation results of input side under different Rd
Fig.8 Dynamic simulation results of input and output (Rd = 33 Ω)
Fig.9 Dynamic simulation results of specific harmonic elimination method
Fig.10 Dynamic simulation results of input three-phase current under different methods
Fig.11 Simulation results of input current ia under different methods (Io* = 3.5 A)
Io*/A 谐振抑制方法 ηi /%
i = 13 i = 17 i = 19 i = 23 i = 25
3.5 方法1 0.35 0.19 0.65 0.26 0.07
3.5 方法2 0.08 0.31 0.59 0.25 0.11
6.5 方法1 0.10 0.15 0.28 0.08 0.10
6.5 方法2 0.18 0.16 0.33 0.12 0.05
Tab.3 Specific harmonic content in input current under different methods
Fig.12 Simulation results of output phase voltage uu under different methods
[1]   WANG R T, WANG X, LIU R T, et al Generalized double line voltage synthesis strategy for three-to-N phase matrix converter[J]. IET Power Electronics, 2018, 11 (5): 895- 901
doi: 10.1049/iet-pel.2017.0487
[2]   高文科, 阎彦, 史婷娜 传统矩阵变换器最小相位误差空间矢量过调制策略[J]. 电工技术学报, 2019, 34 (2): 118- 127
GAO Wen-ke, YAN Yan, SHI Ting-na Minimum phase error space-vector over-modulation strategy of conventional matrix converter[J]. Transactions of China Electrotechnical Society, 2019, 34 (2): 118- 127
[3]   马星河, 王昆朝, 许丹, 等 抑制矩阵变换器共模电压的间接调制改进方法[J]. 电力系统及其自动化学报, 2019, 31 (4): 77- 82
MA Xing-he, WANG Kun-chao, XU Dan, et al Improved indirect modulation methods for suppressing the common-mode voltage of matrix converter[J]. Proceedings of the CSU-EPSA, 2019, 31 (4): 77- 82
[4]   胡风革, 吴旭升, 聂子玲, 等 矩阵变换器混合型换流策略[J]. 浙江大学学报: 工学版, 2016, 50 (9): 1823- 1830
HU Feng-ge, WU Xu-sheng, NIE Zi-ling, et al Hybrid commutation strategy for matrix converter[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (9): 1823- 1830
[5]   徐云飞, 肖湘宁, 孙雅旻, 等 应用于高压低频输电的H桥级联型矩阵变换器环流机理分析[J]. 电工技术学报, 2017, 32 (6): 191- 200
XU Yun-fei, XIAO Xiang-ning, SUN Ya-min, et al Circulating current analysis of cascaded H-bridge matrix converter for high voltage low-frequency AC transmission[J]. Transactions of China Electrotechnical Society, 2017, 32 (6): 191- 200
[6]   WANG Li-na, WANG Hui, SU Mei, et al A three-level T-type indirect matrix converter based on the third-harmonic injection technique[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5 (2): 841- 853
doi: 10.1109/JESTPE.2017.2666418
[7]   刘继, 张小平, 张瑞瑞 基于FTC的BBMC调速控制策略及参数优化[J]. 自动化学报, 2020, 46 (2): 332- 341
LIU Ji, ZHANG Xiao-ping, ZHANG Rui-rui BBMC speed control strategy and parameter optimization based on FTC[J]. Acta Automatica Sinica, 2020, 46 (2): 332- 341
[8]   黄松涛, 郭有贵, 许烈 三相四桥矩阵变换器非平衡负载运行特性研究[J]. 电机与控制学报, 2018, 22 (6): 5- 14
HUANG Song-tao, GUO You-gui, XU Lie Research on the capacity of four-leg matrix converter with unbalanced load[J]. Electric Machines and Control, 2018, 22 (6): 5- 14
[9]   邓文浪, 吴金凤, 盘宏斌, 等 双级矩阵变换器功率开关开路故障的分析与诊断[J]. 电机与控制学报, 2018, 22 (7): 59- 68
DENG Wen-lang, WU Jin-feng, PAN Hong-bin, et al Analysis and diagnosis of open-circuited switch faults in two-stage matrix converter[J]. Electric Machines and Control, 2018, 22 (7): 59- 68
[10]   SHI B P, ZHOU B, ZHU Y Q, et al Open-circuit fault analysis and diagnosis for indirect matrix converter[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6 (2): 770- 781
doi: 10.1109/JESTPE.2017.2772788
[11]   程启明, 黄伟, 程尹曼, 等 双级矩阵变换器驱动永磁同步电机的混合非线性控制系统[J]. 电工技术学报, 2017, 32 (4): 101- 111
CHENG Qi-ming, HUANG Wei, CHENG Yin-man, et al Hybrid nonlinear control system of permanent magnet synchronous motor driven by two stage matrix converter[J]. Transactions of China Electrotechnical Society, 2017, 32 (4): 101- 111
[12]   刘晓楠 矩阵变换器-永磁同步电机系统直接转矩控制转矩波动抑制策略[J]. 中国电机工程学报, 2020, 40 (1): 300- 308
LIU Xiao-nan Torque ripple reduction in matrix converter-fed permanent magnet synchronous motor driven by direct torque control[J]. Proceedings of the CSEE, 2020, 40 (1): 300- 308
[13]   梅杨, 黄伟超, 刘子毓 矩阵式隔离型双向AC-DC变换器控制策略[J]. 电工技术学报, 2019, 34 (12): 2499- 2506
MEI Yang, HUANG Wei-chao, LIU Zi-yu Bidirectional and isolated AC-DC converter based on reduced matrix converter[J]. Transactions of China Electrotechnical Society, 2019, 34 (12): 2499- 2506
[14]   宋卫章, 刘江, 孙向东, 等 基于模型预测控制的三相−一相矩阵变换器偏磁控制[J]. 电工技术学报, 2019, 34 (12): 2489- 2498
SONG Wei-zhang, LIU Jiang, SUN Xiang-dong, et al Research on bias control of 3 phase-1 phase matrix converter based on model predictive control[J]. Transactions of China Electrotechnical Society, 2019, 34 (12): 2489- 2498
[15]   夏益辉, 张晓锋, 乔鸣忠, 等 矩阵变换器输入滤波器设计与研究[J]. 海军工程大学学报, 2014, 26 (4): 18- 22
XIA Yi-hui, ZHANG Xiao-feng, QIAO Ming-zhong, et al Analysis and design of input filter in matrix converter[J]. Journal of Naval University of Engineering, 2014, 26 (4): 18- 22
[16]   王红红, 胡彦奎, 熊剑, 等 矩阵变换器阻尼输入滤波器的优化设计[J]. 电气传动, 2014, 44 (4): 38- 41
WANG Hong-hong, HU Yan-kui, XIONG Jian, et al Optimized design of damped input filter of matrix converter[J]. Electric Drive, 2014, 44 (4): 38- 41
doi: 10.3969/j.issn.1001-2095.2014.04.009
[17]   童诚. 三相-三相双级矩阵变换器的研究与实现[D]. 合肥: 合肥工业大学, 2010: 46-48.
TONG Cheng. Research and realization of three-phase three-phase two-stage matrix converter [D]. Hefei: Hefei University of Technology, 2010: 46-48.
[18]   许宇翔, 王培良, 雷能玮, 等 多模块矩阵变换器改进型线电压合成闭环控制策略研究[J]. 电测与仪表, 2020, 57 (8): 122- 127
XU Yu-xiang, WANG Pei-liang, LEI Neng-wei, et al Research on closed loop control strategy of the improved line voltage synthesis for multi-modular matrix converter[J]. Electrical Measurement and Instrumentation, 2020, 57 (8): 122- 127
[19]   LEI J X, ZHOU B, WEI J D, et al Predictive power control of matrix converter with active damping function[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (7): 4550- 4559
doi: 10.1109/TIE.2016.2541599
[20]   陆松, 葛红娟, 陈思, 等 基于滤波器状态反馈的矩阵变换器网侧电流闭环策略[J]. 电工技术学报, 2016, 31 (7): 65- 71
LU Song, GE Hong-juan, CHEN Si, et al A grid current closed-loop control strategy for matrix converter based on states feedback of filter[J]. Transactions of China Electrotechnical Society, 2016, 31 (7): 65- 71
doi: 10.3969/j.issn.1000-6753.2016.07.008
[1] Chao-jun XUE,Hai-bo WANG,Yu-peng CHEN. Optimal design and experimental study of thrust adsorption wall-climbing robot[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1181-1190, 1198.
[2] Miao LIN,Yong-jian JU,Gang MENG,Kun WANG,Yi CAO. Design and optimization of large range 2-DOF micro-positioning clamping system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1234-1244.
[3] Yong YU,Jing-yuan XUE,Sheng DAI,Qiang-wei BAO,Gang ZHAO. Quality prediction and process parameter optimization method for machining parts[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 441-447.
[4] Wei-da LI,Juan LI,Xiang LI,Hong-miao ZHANG,Hong GU,Yi-peng SHI,Hao-jie ZHANG,Li-ning SUN. Dynamic analysis and parameter optimization of under-actuated heterogeneous lower limb rehabilitation robot[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 222-228.
[5] Tian-xiang ZHOU,Xiao-yan ZHENG,Shi-ze YE,Heng-lin CHEN. Electromagnetic interference filter design based on terminal model of inverter[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2215-2224.
[6] Yong-qiang OUYANG,Xin-yan ZHANG. Design of energy-saving automated storage and retrieval system considering acceleration and deceleration of storage and retrieval machine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1681-1688.
[7] Liang LU,Fei-yan XIA,Yao-bao YIN,Jia-yang YUAN,Sheng-rong GUO. Spool stuck mechanism of ball-type rotary direct drive pressure servo valve[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1265-1273.
[8] LIU Kai, CAO Yi, ZHOU Rui, GE Shu-yi, DING Rui. Modeling and optimizing of one-translational and two-rotational LEMs flexure hinge[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2399-2407.
[9] HU Feng ge, WU Xu sheng, NIE Zi ling1, WANG Qing. Hybrid commutation strategy for matrix converter[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1823-1830.
[10] JING Kai, ZHUANG Yi-qi, LI Zhen-rong, LV Yu-ze. Design of low noise amplifier for 802.11a application[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 476-481.
[11] SUN Xiao-yan, YAO Chen-chun, WANG Hai-long, ZHANG Zhi-cheng. Parameter influence analysis of wedge-type anchorages for FRP tendons based on three-dimensional finite element model[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1058-1067.
[12] SUN Yue, ZHAO Zhi-bin, SU Yu-gang, TANG Chun-sen. Nonlinear programming research on contactless power transfer
system parameters
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(2): 353-360.
[13] LIN Chao, YU Song-song, TAO Gui-bao, CHENG Kai, TAO You-tao, SU Xin-hong. Static and dynamic optimal design of bridge-type mechanism of
micro/nano-positioning platform
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 1067-1073.
[14] WANG Lin-tao, GONG Guo-fang, SHI Hu. Energy-saving technology of segment erecting process of
shield tunneling machine based on erecting parameters optimization
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2259-2267.
[15] GUO Zeng-wei, GE Yao-jun, LU An-ping. Parameter optimization of TMD for vortex-induced vibration control[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(1): 8-13.