Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Design of low noise amplifier for 802.11a application
JING Kai1, ZHUANG Yi-qi1, LI Zhen-rong1, LV Yu-ze2
1.Department of Microelectronics, Xidian University, Xian 710071, China; 2.Chongqing Southwest Integrated Designing Limited Liability Company, Chongqing 401332,China
Download:   PDF(307KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An image-rejection low noise amplifier (LNA) for 802.11a standard was designed for  realization of 802.11a receiving unit. This circuit adopted source-degeneration structure with optimization in active notch filter, decreasing the power and die area in filter network dramatically. Image-rejection ratio was increased and traditional super heterodyne receiver with off-chip filter was replaced. Based on Jazz 0.18 μm SiGe BiCMOS process, simulation results showed that at the band of 5.15-5.35 GHz and image frequency band of 3.5-3.7 GHz, 18.52 dB power gain and less than -13 dB reflection coefficient were achieved. Noise figure is 3.1-3.4 dB and the image-rejection ratio is 33.75 dB, and the input third-order intermodulation point (IIP3) was -9.58 dBm at 5.2 GHz. Total power dissipation was 13 mW draining from 1.8 V power supply, and power in active filter was only 0.57 mW.



Published: 28 August 2015
CLC:  TN 402  
  TP 274  
Cite this article:

JING Kai, ZHUANG Yi-qi, LI Zhen-rong, LV Yu-ze. Design of low noise amplifier for 802.11a application. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(3): 476-481.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.03.012     OR     http://www.zjujournals.com/eng/Y2015/V49/I3/476


适用于802.11a的低噪声放大器设计

为实现802.11a接收单元,设计一款适用于802.11a协议具有镜像抑制功能的低噪声放大器(LNA).电路采用源简并结构,对有源陷波滤波器加以优化,可极大地减小了滤波网络的功耗和芯片面积,提高镜像抑制比,替代传统超外差接收机片外实现滤波器方式.电路采用Jazz 0.18 μm SiGe BiCMOS进行工艺仿真,结果表明:在5.15~5.35 GHz的工作频段和3.5~37 GHz镜像频段下,电路可以实现1852 dB的功率增益,小于-13 dB的反射系数,3.1~3.4 dB的噪声系数和33.75 dB的镜频抑制比;5.2 GHz频率下的输入3阶交调点为-9.58 dBm,电源电压为1.8 V,总功耗为13 mW,有源滤波器功耗仅为0.57 mW.

[1] GOLMAKANI A, MAFINEJAD K, KOUZANI A. Design and optimization of LNA topologies with image rejection filters [J]. International Journal of RF and Microwave Computer:Aided Engineering, 2010, 20(3): 286-297.
[2] MASUDA T, SHIRAMIZU N, NAKAMURA T, et al. SiGe HBT amplifiers with high image rejection for quasi-millimeter-wave frequency range [C]∥ 10th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF2010). New Orleans: IEEE, 2010: 132-135.
[3] KANG H Y, NGUYEN T K, PYO C S, et al. Image-rejection receiver using on-chip active notch filters for 24-GHz band wireless communication applications [J]. Analog Integrated Circuits and Signal Processing, 2013, 74(3): 577-584.
[4] BAKI K A, EL-GAMAL M N. A 1 V 08 mW multi-GHz CMOS differential tunable image reject notch filter [C]∥ 48th Midwest Symposium on Circuits and Systems. Covington: MWSCAS, 2005: 802-805.
[5] CHANG J F, LIN Y S. DC-105 GHz complimentary metal oxide semiconductor distributed amplifier with RC gate terminal network for ultra-wideband pulse radio systems [J]. IET Microwaves, Antennas and Propagation, 2012, 6(2): 127-134.
[6] CHEN H K, LIN Y S, LU S S. Analysis and design of a 16–28 GHz gompact wideband LNA in 90-nm CMOS using a π-match input network [J]. Microwave Theory and Techniques, 2010, 58(8):2092-2104.
[7] LIN Y T, CHEN H C, WANG T, et al. 3-10 GHz ultra-wideband low-noise amplifier utilizing miller effect and inductive shunt–shunt feedback technique [J]. Microwave Theory and Techniques, 2007, 55 (9):1832-1843.
[8] RAZAVI B. RF microelectronics [M]. 2nd ed. New Jersey: Prentice Hall, 2011: 266-305.
[9] MACEDO J A, COPELAND M A. A 19-GHz silicon receiver with monolithic image filtering [J]. Journal of Solid-State Circuits, 1998,33(3): 378-386.
[10] JENEI S, NAUWELAERS B K J C, DECOUTERE S. Physics-based closed-form inductance expression for compact modeling of integrated spiral inductors [J]. Journal of Solid-State Circuits, 2002, 37(1): 77-80.
[11] ULUTAS B H, ISLIER A A. A clonal selection algorithm for dynamic facility layout problems [J]. Manufacturing Systems, 2010, 28(4): 123-131.
[12] LEE L C, ABU K B A, ALBERT V K. A 5 GHz CMOS tunable image-rejection low-noise amplifier [C]∥ 2006 International RF and Microwave Conference Proceedings. Putrajaya: RFM, 2006: 152-156.
[13] WEI L S, WU H I, JOU C F. Design of low-voltage CMOS low-noise amplifier with image-rejection function. [J]. Electronics Letters, 2008, 44(16): 12.
[14] DEBEVEC P E, JITENDRA M. Recovering high dynamic range radiance maps from photographs [C] ∥ Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1997.
[15]MALIK M H, GILANI S A M,HAQ A.Wavelet based exposure fusion\[C\]∥Proceedings of the World Congress on Engineering.Lodon:WCE,2008:688-693.
[1] ZHANG Wei, HU You de, ZHENG Li rong. Design of chip-level clock system using frequency tunable standing-wave oscillators[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 168-176.
[2] SU Meng yao, CHEN Xu bin, QIU Jin peng, WANG Zhi yu, LIU Jia rui,CHEN Hua, SHANG Yong heng, LIU Dong dong, YU Fa xin. Design of highly reliable single event upset hardened shift register[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 792-798.
[3] MENG Xin, SHEN Hai-bin, YAN Xiao-lang. An XML Schema based fine-grained SoC reuse methodology[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(3): 486-494.
[4] MENG Xin, SHEN Hai-bin, YAN Xiao-lang. SoC performance modeling methodology and implementation based
on transaction dataflow
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(2): 314-322.
[5] MENG Cuan, CHEN Hai-Bin, YAN Xiao-Lang. MetaHDL: inference and parameter tracing oriented domainspecific language for hardware description[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(6): 1079-1085.