Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (11): 2215-2224    DOI: 10.3785/j.issn.1008-973X.2021.11.023
    
Electromagnetic interference filter design based on terminal model of inverter
Tian-xiang ZHOU(),Xiao-yan ZHENG,Shi-ze YE,Heng-lin CHEN*()
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1766KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The noise source impedance of inverter has a great influence on the filtering effect of electromagnetic interference (EMI) filter, and it is necessary to extract and analyze the noise source impedance of inverter when designing the filter. A passive EMI filter design method based on terminal model of inverter was studied. A terminal EMI model of inverter was established. By measuring terminal voltage as well as terminal current of inverter and using optimized algorithm, the equivalent noise source and the equivalent source impedance of inverter were extracted. Considering the noise source impedance, the load impedance and the high-frequency characteristics of filter components, optimization algorithm was used to calculate the component parameters of filter, so as to realize the quantitative design of EMI filter. For the problem that common-mode EMI at some frequency points exceeded limit after connecting the filter, the cause of resonance was analyzed, and a damping circuit design method was proposed. Connecting the designed EMI filter for experiment, EMI of the inverter output lines met the standard, which validated the proposed EMI filter design method.



Key wordsinverter      electromagnetic interference (EMI)      noise source impedance      EMI filter design      resonance suppression     
Received: 15 March 2021      Published: 05 November 2021
CLC:  TM 464  
Fund:  国家重点研发计划资助项目(2018YFB1500700)
Corresponding Authors: Heng-lin CHEN     E-mail: zhoutianxiang@zju.edu.cn;henglin@zju.edu.cn
Cite this article:

Tian-xiang ZHOU,Xiao-yan ZHENG,Shi-ze YE,Heng-lin CHEN. Electromagnetic interference filter design based on terminal model of inverter. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2215-2224.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.11.023     OR     https://www.zjujournals.com/eng/Y2021/V55/I11/2215


基于逆变器端口模型的电磁干扰滤波器设计

逆变器的噪声源阻抗对电磁干扰(EMI)滤波器的滤波效果有较大影响,在设计滤波器时有必要对逆变器的噪声源阻抗进行提取和分析,研究基于逆变器端口模型的无源EMI滤波器设计方法. 建立逆变器的端口电磁干扰等效模型,通过测试逆变器的端口电压和端口电流,采用优化算法提取逆变器的等效噪声源和等效源阻抗. 在考虑噪声源阻抗、负载阻抗以及滤波元件高频特性的情况下,采用优化算法计算滤波元件参数,实现EMI滤波器的量化设计. 针对接入滤波器后部分频点共模干扰超标的问题,分析发生谐振的原因,提出阻尼电路的设计方法. 接入所设计的EMI滤波器进行实验,逆变器输出线的电磁干扰符合标准,验证了所提出的EMI滤波器设计方法.


关键词: 逆变器,  电磁干扰(EMI),  噪声源阻抗,  EMI滤波器设计,  谐振抑制 
Fig.1 Photovoltaic micro inverter system
Fig.2 Terminal EMI model of inverter
序号 L线与地之间的外加阻抗 N线与地之间的外加阻抗
1
2 2.2 μF电容与1 Ω电阻串联
3 2.2 μF电容与2 Ω电阻串联
4 2.2 μF电容与5 Ω电阻串联
5 2.2 μF电容与1 Ω电阻串联
6 2.2 μF电容与2 Ω电阻串联
7 2.2 μF电容与5 Ω电阻串联
8 2.2 μF电容与2 Ω电阻串联 2.2 μF电容与2 Ω电阻串联
9 2.2 μF电容与5 Ω电阻串联 2.2 μF电容与5 Ω电阻串联
Tab.1 Component parameters and connection mode of insertion impedances
Fig.3 Amplitude-frequency curve of equivalent noise sources
Fig.4 Amplitude-frequency curve of equivalent noise source impedances
Fig.5 Comparison of measured and calculated terminal voltage ULG
Fig.6 Comparison of measured and calculated terminal voltage UNG
Fig.7 Terminal DM EMI / CM EMI model of inverter
Fig.8 Comparison of terminal DM voltage and CM voltage with conducted EMI limit
Fig.9 Required DM insertion loss and CM insertion loss of inverter
Fig.10 Terminal DM EMI model after connecting π-shaped DM filter
方案 CX1/μF CX2/μF LDM/μH
1 4.47 2.83 5.46
2 3.91 4.53 3.55
3 2.94 2.15 7.73
Tab.2 Component parameters of π-shaped DM filter obtained by simulation
Fig.11 DM EMI after connecting π-shaped DM filter
Fig.12 Terminal CM EMI model after connecting π-shaped CM filter
Fig.13 Terminal CM EMI model after connecting two-stage π-shaped CM filter
方案 CY1/nF CY2/nF CY3/nF LCM1/mH LCM2/mH
1 1.20 0.23 0.46 5.00 0.42
2 1.86 0.13 0.24 1.60 0.46
3 1.35 0.10 0.10 0.38 5.00
Tab.3 Component parameters of two-stage π-shaped CM filter obtained by simulation
方案 CY1/nF CY2/nF CY3/nF LCM1/mH LCM2/mH
1 1.0 0.5 0.5 5.0 0.4
2 2.2 0.5 0.5 1.5 0.4
3 1.0 0.5 0.5 0.5 5.0
Tab.4 Component parameters of two-stage π-shaped CM filter actually selected
Fig.14 CM EMI after connecting two-stage π-shaped CM filter
Fig.15 High-frequency equivalent model of two-stage π-shaped CM filter
Fig.16 CM EMI after adding different damping resistors
Fig.17 Connection diagram of EMI filter
Fig.18 EMI of L-line and N-line after connecting filter
[1]   张举良, 高志强, 董全智, 等 光伏发电直流侧共模电压干扰的抑制研究[J]. 电力系统保护与控制, 2019, 47 (14): 102- 108
ZHANG Ju-liang, GAO Zhi-qiang, DONG Quan-zhi, et al Research on suppression of photovoltaic DC side common-mode voltage interference[J]. Power System Protection and Control, 2019, 47 (14): 102- 108
doi: 10.7667/PSPC20191413
[2]   HAMZA D, QIU M, JAIN P K Application and stability analysis of a novel digital active EMI filter used in a grid-tied PV microinverter module[J]. IEEE Transactions on Power Electronics, 2013, 28 (6): 2867- 2874
doi: 10.1109/TPEL.2012.2219074
[3]   王冕, 曲东昌, 陈国柱 三相脉冲调制变流器驱动电源电磁兼容性能提升[J]. 浙江大学学报: 工学版, 2016, 50 (4): 657- 662
WANG Mian, QU Dong-chang, CHEN Guo-zhu EMC performance improvement of auxiliary power supplies in three-phase PWM converters[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (4): 657- 662
doi: 10.3785/j.issn.1008-973X.2016.04.009
[4]   JIANG S, LIU Y, LIANG W, et al Active EMI filter design with a modified LCL-LC filter for single-phase grid-connected inverter in vehicle-to-grid application[J]. IEEE Transactions on Vehicular Technology, 2019, 68 (11): 10639- 10650
doi: 10.1109/TVT.2019.2944220
[5]   张逸成, 叶尚斌, 张佳佳, 等 电力电子设备传导噪声抑制措施研究综述[J]. 电工技术学报, 2017, 32 (14): 77- 86
ZHANG Yi-cheng, YE Shang-bin, ZHANG Jia-jia, et al Review of conducted noise suppression method for power electronic and electrical equipment[J]. Transactions of China Electrotechnical Society, 2017, 32 (14): 77- 86
[6]   周峰, 王世山, 孟小利 基于多物理场耦合特性的集成式母线型EMI滤波器设计[J]. 中国电机工程学报, 2016, 36 (9): 2494- 2504
ZHOU Feng, WANG Shi-shan, MENG Xiao-li The design of integrated bus-bar EMI filter based on the coupling characteristics of multi-physical fields[J]. Proceedings of the Chinese Society for Electrical Engineering, 2016, 36 (9): 2494- 2504
[7]   石磊磊, 王世山, 徐晨琛 二端口网络散射参数理论及其在平面EMI滤波器测试中的应用[J]. 电工技术学报, 2013, 28 (2): 78- 85
SHI Lei-lei, WANG Shi-shan, XU Chen-chen Theory of scatter parameters of two port network and its application in the test of planar EMI filter[J]. Transactions of China Electrotechnical Society, 2013, 28 (2): 78- 85
doi: 10.3969/j.issn.1000-6753.2013.02.011
[8]   BAISDEN A C, BOROYEVICH D, WANG F Generalized terminal modeling of electromagnetic interference[J]. IEEE Transactions on Industry Applications, 2010, 46 (5): 2068- 2079
doi: 10.1109/TIA.2010.2058836
[9]   BISHNOI H, BAISDEN A C, MATTAVELLI P, et al Analysis of EMI terminal modeling of switched power converters[J]. IEEE Transactions on Power Electronics, 2012, 27 (9): 3924- 3933
doi: 10.1109/TPEL.2012.2190100
[10]   SHUAI Z, ZHANG J, TANG L, et al Frequency shifting and filtering algorithm for power system harmonic estimation[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (3): 1554- 1565
doi: 10.1109/TII.2018.2844191
[11]   CHEN H, WANG T Estimation of common-mode current coupled to the communication cable in a motor drive system[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60 (6): 1777- 1785
doi: 10.1109/TEMC.2018.2804341
[12]   CHEN H, YE S Modeling of common-mode impedance of an inverter-fed induction motor from online measurement[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60 (5): 1581- 1589
doi: 10.1109/TEMC.2017.2779886
[13]   LI K R, SEE K Y, LI X M Inductive coupled in-circuit impedance monitoring of electrical system using two-port ABCD network approach[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64 (9): 2489- 2495
doi: 10.1109/TIM.2015.2403091
[14]   赵波, 闫景瑞, 赵阳 基于双电流探头和四种状态测试的EMI噪声源阻抗提取方法[J]. 电气技术, 2016, (9): 21- 25
ZHAO Bo, YAN Jing-rui, ZHAO Yang EMI noise source impedance extraction method based on double current probe and four kinds of state test[J]. Electrical Engineering, 2016, (9): 21- 25
doi: 10.3969/j.issn.1673-3800.2016.09.005
[15]   HAMI F, BOULZAZEN H, KADI H High-frequency characterization and modeling of EMI filters under temperature variations[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59 (6): 1906- 1915
doi: 10.1109/TEMC.2017.2679700
[16]   KOVACEVIC I F, FRIEDLI T, MUSING A M, et al 3-D electromagnetic modeling of parasitics and mutual coupling in EMI filters[J]. IEEE Transactions on Power Electronics, 2014, 29 (1): 135- 149
doi: 10.1109/TPEL.2013.2254130
[17]   CHEN H, YE S Modeling and optimization of EMI filter by using artificial neural network[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61 (6): 1979- 1987
doi: 10.1109/TEMC.2019.2944887
[18]   郑晓燕, 叶世泽, 陈恒林 基于全相位FFT的端口电磁干扰建模方法[J]. 电工技术, 2020, (13): 25- 28
ZHENG Xiao-yan, YE Shi-ze, CHEN Heng-lin Port EMI modeling method based on all-phase FFT[J]. Electric Engineering, 2020, (13): 25- 28
[19]   王兆华, 黄翔东. 数字信号全相位谱分析与滤波技术[M]. 北京: 电子工业出版社, 2009.
[20]   王培康, 郑峰, 杨小瑜, 等 一种调整共模噪声源阻抗并优化EMI滤波器性能的方法[J]. 中国电机工程学报, 2014, 34 (6): 993- 1000
WANG Pei-kang, ZHENG Feng, YANG Xiao-yu, et al A method for adjusting common mode noise impedance and optimizing EMI filters[J]. Proceedings of the Chinese Society for Electrical Engineering, 2014, 34 (6): 993- 1000
[21]   张宇. 考虑源阻抗影响的EMI滤波器优化设计[D]. 武汉: 华中科技大学, 2014.
ZHANG Yu. Optimized design of EMI filter considering noise source impedance[D]. Wuhan: Huazhong University of Science and Technology, 2014.
[1] Yang LI,Rong QI,Ming-guang DAI. Linear active disturbance rejection control with adjustable compensation factor applied for outer voltage control of inverter[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1279-1288.
[2] CHEN Cheng-ying, CHEN Li-ming, HUANG Xin-dong, ZHANG Hong-yi. Design of extremely low power sigma-delta modulator based on cascode inverter[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1068-1072.
[3] LI Guo-fei, TENG Qing-fang, WANG Chuan-lu, ZHANG Ya-qin. FCS-MPC strategy with sliding mode control for PMSM systems driven by four-switch inverters[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 620-627.
[4] YUAN Qing-wei, ZHAO Rong-xiang. Common-mode voltage suppression algorithm for three-phase PWM inverter in consideration of dead-band[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2276-2286.
[5] HU Ke yong, XU Fang, AI Qing lin, XU Hong wei, OU Yang jing. Redundant group control strategy for microgrid with multi-inverters[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1608-1617.
[6] ZHANG Ben ben,XU Fang,WU Le bin,AI Qing ling. Adaptive resonance damping of LCL filtered grid connected inverter[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 180-185.
[7] WANG Kai, YAO Wen-xi, LV Zheng-yu. Self-commissioning algorithm for induction machine based on direct current biased excitation[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1382-1387.
[8] CAI Hui, GUO Yu, YAN Hong, CHEN Wei-min, LI Qing. Design of soft-switching system on three-phase load balance for IDC electric power[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2210-2215.
[9] ZHANG Guo-yue, QU Yi-long, QI Dong-lian, LI Ran. Three-level photovoltaic inverter technology based on repetitive control[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1339-1344.
[10] LIU Xue-wen, QU Wen-tai, CHENG Yong. Novel SVPWM control strategy of active inverter in double-fed system[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(9): 1609-1615.
[11] WANG Si-ran, ZHOU Xia, YAO Wen-xi, LU Zheng-yu, WANG Yue-ren. Grid current regulation of grid-connected lithium battery
power recovery system
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 809-814.
[12] LEI Zhi-li, AI Xin, CUI Ming-yong, LIU Xiao. Simulation on series harmonic resonance of microgrid
based on modal assessment method
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 178-184.