Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (7): 1336-1341    DOI: 10.3785/j.issn.1008-973X.2022.07.009
    
Vibration-shear equivalent theory based on rheological property of cement slurry
Xiao-tian LI(),Guang-nian XIE,Zhu-rui GAO,Sheng-jun ZHANG,Jun-shi LI
School of Mechanical Engineering, Tongji University, Shanghai 201804, China
Download: HTML     PDF(907KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The transformation mechanism of the rheological model of cement slurry was explained in order to analyze the rheological properties of cement slurry under excitation. The vibration-shear equivalent theory was proposed for the rheological analysis of cement slurry under excitation. The shear rate of the flow field of cement paste in the rotary viscometer under the excitation condition was calculated according to the modified HI theory and the radial stratification algorithm of rotary viscometer. The sinusoidal vibration process of the shaking table was transformed into the shear process of cement paste. The HI parameter calibration test under the vibration frequency of 20 Hz and the viscosity test of cement paste under the vibration frequency of 30 Hz were conducted by using the self-made rotary viscometer. Results showed that the error between HI parameter calibration results and numerical calculation results was about 7%, and the error between test viscosity and numerical calculation viscosity of cement paste was 8%, which tended to converge. The viscosity of cement paste gradually decreased and reached a peak by increasing the vibration frequency. The rheological model gradually changed from Bingham model to Hershel-Bulkley model, which was transformed into Power-Law model.



Key wordscement slurry      vibration-shear equivalent theory      rheological property      vibration      HI theory     
Received: 11 July 2021      Published: 26 July 2022
CLC:  TU 528  
Fund:  国家“十三五”重点研发计划资助项目(2017YFC0704004);山东省重点研发计划资助项目(2020CXGC011005)
Cite this article:

Xiao-tian LI,Guang-nian XIE,Zhu-rui GAO,Sheng-jun ZHANG,Jun-shi LI. Vibration-shear equivalent theory based on rheological property of cement slurry. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1336-1341.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.07.009     OR     https://www.zjujournals.com/eng/Y2022/V56/I7/1336


基于水泥净浆流变性的振动-剪切等效理论

为了分析振动条件下水泥净浆的流变特性,解释水泥净浆流变性模型的转化机制,提出适用于振动条件下水泥净浆流变性分析的振动-剪切等效理论. 根据修正HI理论和回转黏度仪径向分层算法,计算振动条件下回转黏度仪内水泥净浆流场的剪切速率,将振动台正弦振动过程转化为对水泥净浆的剪切过程. 采用自制回转黏度仪,开展20 Hz振动频率下的HI参数标定试验和30 Hz振动频率下的水泥净浆黏度试验. 结果表明,HI参数标定结果与数值计算结果之间的误差约为7%,水泥净浆的试验黏度与数值计算的黏度之间的误差为8%并趋于收敛状态. 增大振动频率,水泥净浆的黏度逐渐减小并达到峰值,流变性模型逐渐由Bingham模型转变为Hershel-Bulkley模型,最后转变为Power-Law模型.


关键词: 水泥净浆,  振动-剪切等效理论,  流变特性,  振动,  HI理论 
Fig.1 Schematic diagram of radial stratification in flow field area of rotary viscometer
Fig.2 Schematic diagram of velocity distribution of flow field at section A-A of rotary viscometer under excitation
Fig.3 Structure diagram of rotary viscometer
Fig.4 Schematic diagram of cement paste viscosity measuring device under vibration
参数 参数值 参数 参数值
${m_{\rm{a} } }/{\rm{s}}$ 30 ${\tau _0}/{\rm{Pa}}$ 1
${m_{\rm{b} } }/{\rm{s}}$ 0 $\mu/({\rm{Pa} }\cdot{\rm{s} })$ 6
$ {a_1}$ 530 ${\dot \gamma _{ {\rm{vib} } } }/{\rm{s} }^{-1}$ 10
$ {a_2} $ 300 ${R_1}/{\rm{m}}$ 0.1
$ {U_0} $ 0.9 ${R_2} /{\rm{m}}$ 0.16
Tab.1 Calibration results of HI parameters under 20 Hz excitation
Fig.5 Comparison between experimental viscosity and numerical viscosity of cement slurry under different vibration frequencies
Fig.6 Diagram of viscosity change of cement net slurry under different shear rates caused by shaking table vibration
${\dot \gamma _{{\rm{vib}}} }$ 拟合表达式
0 $T = 1.842 + 0.022 \; 72\varOmega$
3 $T = 0.718 \; 4 + 0.151 \; 9{\varOmega ^{0.678 \; 2} }$
5 $T = 0.313 \; 1 + 0.209 \; 4{\varOmega ^{0.629 \; 4} }$
7 $T = 0.251{\varOmega ^{0.603 \; 6} }$
10 $T = 0.204 \; 8{\varOmega ^{0.640 \; 6} }$
Tab.2 Fitting expression of torque and speed of rotary viscometer at different shear rates caused by shaking table vibration
Fig.7 Schematic diagram of torque variation with rotation speed of rotary viscosimeter at different shear rates caused by shaking table vibration
[1]   SHEN H, DUAN Z S, LI F. The significance of vibration in concrete mixing [C]// Applied Mechanics and Materials. Switzerland: Trans Tech Publication, 2012, 220: 509-512.
[2]   SAFAWI M I, IWAKI I, MIURA T Study on the applicability of vibration in fresh high fluidity concrete[J]. Cement and Concrete Research, 2005, 35 (9): 1834- 1845
doi: 10.1016/j.cemconres.2004.10.031
[3]   BARNES H A, HUTTON J F, WALTERSW K. An introduction to rheology [M]. Amsterdam: Elsevier, 1989.
[4]   BARNES H A Thixotropy: a review[J]. Non-Newtonian Fluid Mechanics, 1997, 70 (1/2): 1- 33
doi: 10.1016/S0377-0257(97)00004-9
[5]   HATTORI K. A new viscosity equation for non-Newtonian suspensions and its application[C]// Proceeding of the RILEM Colloquium on Properites of Fresh Concrete. London: [s. n. ], 1990: 83-92.
[6]   HATTORI K, IZUMI K. Rheology of fresh cement and concrete [C]// Proceeding of the International Conference Organized by the British Society of Rheology. London: University of Liverpool, 1991: 82-92.
[7]   TATTERSALL G H, BANFILL P F G. The rheology of fresh concrete [M]. London: Pitman Advanced Publishing Program, 1983.
[8]   WALLEVIK J E. Particle flow interaction theory: thixotropic behavior and structural breakdown [C]// Proceedings of the Conference on Our World of Concrete and Structures. Singapore: [s. n. ], 2011: 14-16.
[9]   WALLEVIK J E Rheological properties of cement paste: thixotropic behavior and structural breakdown[J]. Cement and Concrete Research, 2009, 39 (1): 14- 29
doi: 10.1016/j.cemconres.2008.10.001
[10]   WALLEVIK J E. Rheology of particle suspensions: Fresh concrete, mortar and cement paste with various types of lignosulfonates [D]. Trondheim: Norwegian University of Science and Technology, 2003.
[11]   BRATU P, PINTOI R. Evaluation of the rheological parameters modification of concrete vibrating compaction by dynamic methods [C]// MATEC Web of Conferences. France: EDP Sciences, 2014: 01016.
[12]   JURADIN S, KRSTULOVIC P The vibration rheometer: the effect of vibration on fresh concrete and similar materials[J]. Materialwissenschaft und Werkstofftechnik, 2012, 43 (8): 733- 742
doi: 10.1002/mawe.201200769
[13]   JURADIN S Determination of rheological properties of fresh concrete and similar materials in a vibration rheometer[J]. Materials Research, 2012, 15 (1): 103- 113
[14]   DATE S, GORYOZONO Y, HASHIMOTO S Study on consolidation of concrete with vibration[J]. Physics Procedia, 2012, 25 (4): 325- 332
[15]   DE LARRARD F, FERRARIS C F, SEDRAN T Fresh concrete: a Herschel-Bulkley material[J]. Materials and Structures, 1998, 31 (7): 494- 498
doi: 10.1007/BF02480474
[16]   PICHLER C, RÖCK R, LACKNER R Apparent power-law fluid behavior of vibrated fresh concrete: engineering arguments based on Stokes-type sphere viscometer measurements[J]. Journal of Non-Newtonian Fluid Mechanics, 2017, 240: 44- 55
doi: 10.1016/j.jnnfm.2016.12.007
[17]   李晓田, 王楚昕, 于永强 基于颗粒流交互理论的水泥净浆流变分布算法[J]. 浙江大学学报: 工学版, 2019, 53 (12): 2264- 2270
LI Xiao-tian, WANG Chu-xin, YU Yong-qiang Rheological distribution algorithm of cement paste based on particle-flow-interaction theory[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (12): 2264- 2270
[18]   VASILIC K, SCHMIDT W, KÜHNE H C, et al Flow of fresh concrete through reinforced elements: experimental validation of the porous analogy numerical method[J]. Cement and Concrete Research, 2016, 88 (1): 1- 6
[19]   BAKER P H, TATTERSALL G H The effect of vibration on the rheological properties of fresh concrete[J]. Magazine of Concrete Research, 1988, 40 (143): 79- 89
doi: 10.1680/macr.1988.40.143.79
[20]   WALLEVIK O H, WALLEVIK J E Rheology as a tool in concrete science: the use of rheographs and workability boxes[J]. Cement and Concrete Research, 2011, 41 (12): 1279- 1288
doi: 10.1016/j.cemconres.2011.01.009
[21]   BANFILL P F G, YONGMO X, DOMONE P L J Relationship between the rheology of unvibrated fresh concrete and its flow under vibration in a vertical pipe apparatus[J]. Magazine of Concrete Research, 1999, 51 (3): 181- 190
doi: 10.1680/macr.1999.51.3.181
[22]   边策, 李金明, 田正宏, 等 受振混凝土流变性试验研究[J]. 水利规划与设计, 2020, 27 (10): 94- 100
BIAN Ce, LI Jin-ming, TIAN Zheng-hong, et al Experimental study on rheological properties of vibrating concrete[J]. Water Resources Planning and Design, 2020, 27 (10): 94- 100
[1] Wen-tao LIU,Kun ZHAO,Jiu-gen WANG,Li SONG. Vibration measurement of ball screws used in automobile braking systems[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1529-1537.
[2] Ai-min JI,Hao WANG,Ming DENG,Lei ZHANG. Lateral vibration behaviors of boom expansion of aerial work platform[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1245-1252.
[3] Zhe-he YAO,Cao-qi ZHANG,Qi-wei SONG,Xi-jiang LU,Jian-qiang KONG,Jian-hua YAO. Ultrasonic assisted laser repair of V-grooves in nickel-based superalloy[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 887-895.
[4] Shuang ZHAO,Jun-tao WU,Xin-chen QIU,Kui-hua WANG,Yuan TU. Study on defect detection of extended pile shaft under lateral low-strain integrity test[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1867-1876.
[5] Jian-ming TANG,Xu XIE. Investigation on vibration serviceability of long-span suspension footbridge under crosswind[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1903-1911.
[6] Qin-ling ZHANG,Zhi-yi HUANG. High temperature properties of SBS modified asphalt mastics in high temperature and high humidity salt environment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 38-45.
[7] Guang-hao HU,Jin-xue XUE,Wen-ju MA,Zhi-li LONG. Design and experiment of longitudinal-flexural composite ultrasonic transducer for chip bonding[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1335-1340.
[8] Jia-lei ZHAO,Ding ZHOU,Jian-dong ZHANG,Chao-bin HU. Free vibration characteristics of multi-cracked beam based on Chebyshev-Ritz method[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 778-786.
[9] Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.
[10] Fang-fang TAN,Jun-jiang ZHU,Tian-hong YAN,Zhi-qiang GAO,Ling-song HE. Surface roughness prediction of 6061 aluminum alloy based on GA-WPT-ELM[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 40-47.
[11] Pei LIU,Hai-xin ZHU,Wei-guo YANG,Nan-qi HUANGFU. Tests on resonance and vibration mitigation responses of high-rise building under machine excitations[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 102-109.
[12] Yao CHEN,Yuan-qiang CAI,Zhi-gang CAO,Hai-jiang WANG. Influences of pavement irregularity on ground vibrations generated by moving traffic load[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1031-1039.
[13] Zhan-hao HU,Jun-tao FENG,De-ren SHENG,Jian-hong CHEN,Wei LI. Numerical simulation for vibration of interferometric probein wet steam flow field[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1157-1163.
[14] Lin-yuan HU,Wei-qiu CHEN,Zhi-cheng ZHANG,Rong-qiao XU. Free vibration analysis of concrete beams with corrugated steel webs based on Zig-zag theory[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 503-511.
[15] Jing NI,Xing-run GUO,Shao-feng WU,Xu REN. Influence of broaching cutting edge surface microstructure on broaching performance[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2067-2075.