Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (11): 2067-2075    DOI: 10.3785/j.issn.1008-973X.2019.11.003
Mechanical Engineering     
Influence of broaching cutting edge surface microstructure on broaching performance
Jing NI*(),Xing-run GUO,Shao-feng WU,Xu REN
College of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
Download: HTML     PDF(1472KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to study the influence of the broaching cutting edge surface microstructure on the broaching process, a broaching test bench was set up. Five kinds of broaches with different numbers of surface micro-structure grooves were designed. A comparison test of the actual broaching load, the workpiece vibration characteristics and the chip tortuous radius was carried out. Test results showed that when the tool model changed from 2/3 to 6/7, the broaching load first decreased and then increased, and when the 4/5 type broach was used, the cutting load was the lowest, which was 420 N lower than that of the 2/3 type broach, and 647 N lower than that of the 6/7 type broach. The more the number of micro-grooves on the surface of the broaching cutting edge, the better the suppression effect on the vibration characteristics of the workpiece. Compared with the 2/3 type broach, the root mean square amplitude of the micro-vibaration of the workpiece and the amplitude corresponding to the cutting frequency of the 6/7 type broach were reduced by 38% and 63%, respectively. With the increase of the number of micro-structure grooves of the broaching cutting edge, the tortuous radius of the chip, i.e. the difficulty of chip deformation, decreased first and then increased, and the distortion radius of the chip was the minimum (654 μm) when the 4/5 type broach was used. Increasing the number of microstructures on the cutting edge surface can improve the broaching performance, but not the more the better, there is an optimum value.



Key wordssurface micro-structure      cutting edge      broaching load      vibration      experimental research     
Received: 28 September 2018      Published: 21 November 2019
CLC:  TG 501  
Corresponding Authors: Jing NI     E-mail: nijing2000@163.com
Cite this article:

Jing NI,Xing-run GUO,Shao-feng WU,Xu REN. Influence of broaching cutting edge surface microstructure on broaching performance. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2067-2075.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.11.003     OR     http://www.zjujournals.com/eng/Y2019/V53/I11/2067


拉刀切削刃表面微结构对拉削性能的影响

为了研究拉刀切削刃表面微结构对拉削加工的影响,搭建拉削加工实验台,设计5种表面微结构数量不同的拉刀,进行实际拉削负载、工件振动特性和切屑蜷曲半径的对比实验. 实验结果表明,当刀具型号从2/3型变为6/7型时,拉削负载呈现先减小后增大的趋势;使用4/5型拉刀时的拉削负载最低,与使用2/3型拉刀和6/7型拉刀时相比,负载分别降低420、647 N. 拉刀切削刃表面微结构槽数量越多,对工件振动特性的抑制效果越好;使用6/7型拉刀时的工件微振动均方根振幅和刀齿切入频率对应的幅值相对于使用2/3型拉刀时分别降低38%、63%. 随着拉刀切削刃微结构槽数量的增多,切屑的蜷曲半径(即切屑变形难易程度)呈现先减小后增大的趋势,当使用4/5型拉刀时切屑的蜷曲半径达到最小值(654 μm). 增加切削刃表面微结构的数量可以提高拉削性能,但是数量并不是越多越好,而是存在最优值.


关键词: 表面微结构,  切削刃,  切削负载,  振动,  实验研究 
Fig.1 Experimental system for broaching
Fig.2 Schematic diagram of broaching tool
Fig.3 Surface microstructure of different types of broaching tools
Fig.4 Model of workpiece before and after broaching
刀具型号 v/(mm?s?1 fs/kHz to/s nt N
2/3 80 2 8 2或3 10
3/4 80 2 8 3或4 10
4/5 80 2 8 4或5 10
5/6 80 2 8 5或6 10
6/7 80 2 8 6或7 10
Tab.1 Experimental parameter design table
Fig.5 Broaching load curves of different types of broaching tools
Fig.6 Comparison of average load of different broaching tools
Fig.7 Schematic diagram of contact between workpiece and tooth in multi-tooth cutting
拉刀型号 m bt/mm Δ/%
2/3 2,3 15.0,14.5 10,14
3/4 3,4 14.5,14.0 14,17
4/5 4,5 14.0,13.5 17,18
5/6 5,6 13.5,13.0 18,23
6/7 6,7 13.0,12.5 23,28
Tab.2 Ratio of chip bump width and tool tooth contact width
Fig.8 Trend of vibration characteristics of workpieces during broaching of different types of tools
Fig.9 Spectrogram of vibration characteristics of z direction of workpieces during broaching of different types of tools
Fig.10 Chip form produced by different types of broaches
Fig.11 Variation trend of chip tortuous radius caused by different types of broaching tools
[1]   LEI S T, DEVARAJAN S, CHANG Z H A study of micro pool lubricated cutting tool in machining of mild steel[J]. Journal of Materials Processing Technology, 2009, 209 (3): 1612- 1620
doi: 10.1016/j.jmatprotec.2008.04.024
[2]   NI J, LANG J, WU C Effect of surface texture on the transverse vibration for sawing[J]. International Journal of Advanced Manufacturing Technology, 2017, 92 (9–12): 4543- 4551
doi: 10.1007/s00170-017-0486-8
[3]   MOHAMED A M O, BAUER R, WARKENTIN A Application of shallow circumferential grooved wheels to creep-feed grinding[J]. Journal of Materials Processing Technology, 2013, 213 (5): 700- 706
doi: 10.1016/j.jmatprotec.2012.11.029
[4]   SHENG J, ZHOU J, HUANG S, et al Characterization and tribological properties of micro-dent arrays produced by laser peening on ZCuSn10P1 alloy[J]. International Journal of Advanced Manufacturing Technology, 2015, 76 (5–8): 1285- 1295
doi: 10.1007/s00170-014-6344-z
[5]   YANG Y F, SU Y S, LI L, et al Performance of cemented carbide tools with microgrooves in Ti-6Al-4V titanium alloy cutting[J]. International Journal of Advanced Manufacturing Technology, 2015, 76 (9–12): 1731- 1738
doi: 10.1007/s00170-014-6357-7
[6]   戚宝运, 李亮, 何宁, 等 微织构刀具正交切削Ti6Al4V的试验研究[J]. 摩擦学学报, 2011, 31 (4): 346- 351
QI Bao-yun, LI Liang, HE Ning, et al Experimental study on orthogonal cutting of Ti6Al4V alloy by micro-textured tool[J]. Journal of Tribology, 2011, 31 (4): 346- 351
[7]   FATIMA A, MATIVENGA P T A comparative study on cutting performance of rake-flank face structured cutting tool in orthogonal cutting of AISI/SAE 4140[J]. International Journal of Advanced Manufacturing Technology, 2015, 78 (9–12): 2097- 2106
doi: 10.1007/s00170-015-6799-6
[8]   DONG M K, BAJPAI V, BO H K, et al Finite element modeling of hard turning process via a micro-textured tool[J]. International Journal of Advanced Manufacturing Technology, 2015, 78 (9–12): 1393- 1405
doi: 10.1007/s00170-014-6747-x
[9]   DUAN R, DENG J X, GE D L, et al An approach to predict derivative-chip formation in derivative cutting of micro-textured tools[J]. International Journal of Advanced Manufacturing Technology, 2018, 95 (1–4): 973- 982
doi: 10.1007/s00170-017-1285-y
[10]   OBIKAWA T, KAMIO A, TAKAOKA H, et al Micro-texture at the coated tool face for high performance cutting[J]. International Journal of Machine Tools and Manufacture, 2011, 51 (12): 966- 972
doi: 10.1016/j.ijmachtools.2011.08.013
[11]   DENG J, WU Z, LIAN Y, et al Performance of carbide tools with textured rake-face filled with solid lubricants in dry cutting processes[J]. International Journal of Refractory Metals and Hard Materials, 2012, 30 (1): 164- 172
doi: 10.1016/j.ijrmhm.2011.08.002
[12]   SONG W L, DENG J X, WANG Z J Machining performance of micro-pool tools[J]. Journal of Tribology, 2009, 29 (2): 103- 108
[13]   XING Y, DENG J, ZHAO J, et al Cutting performance and wear mechanism of nanoscale and microscale textured Al2O3/TiC ceramic tools in dry cutting of hardened steel [J]. International Journal of Refractory Metals and Hard Materials, 2014, 43 (3): 46- 58
[14]   宋文龙, 邓建新, 王志军 微池润滑刀具干切削过程中的减摩机理[J]. 摩擦学学报, 2013, 29 (8): 121- 124
SONG Wen-long, DENG Jian-xin, WANG Zhi-jun Friction reduction mechanism during dry cutting of micro-pool lubrication tools[J]. Lubrication and Sealing, 2013, 29 (8): 121- 124
[15]   KAWASEGI N, SUGIMORI H, MORIMOTO H, et al Development of cutting tools with microscale and nanoscale textures to improve frictional behavior[J]. Precision Engineering, 2009, 33 (3): 248- 254
doi: 10.1016/j.precisioneng.2008.07.005
[16]   邓建新, 丁泽良, 赵军, 等 高温自润滑陶瓷刀具材料及其切削性能的研究[J]. 机械工程学报, 2003, 39 (8): 106- 109
DENG Jian-xin, DING Ze-liang, ZHAO Jun, et al Study on high temperature self-lubricating ceramic tool material and its cutting performance[J]. Journal of Mechanical Engineering, 2003, 39 (8): 106- 109
doi: 10.3321/j.issn:0577-6686.2003.08.020
[17]   WU Z, DENG J, YANG C, et al Performance of the self-lubricating textured tools in dry cutting of Ti-6Al-4V[J]. International Journal of Advanced Manufacturing Technology, 2012, 62 (9–12): 943- 951
doi: 10.1007/s00170-011-3853-x
[18]   DUAN R, DENG J, AI X, et al Experimental assessment of derivative cutting of micro-textured tools in dry cutting of medium carbon steels[J]. International Journal of Advanced Manufacturing Technology, 2017, 92 (9–12): 3531- 3540
doi: 10.1007/s00170-017-0360-8
[19]   LI Y, DENG J, CHAI Y, et al Surface textures on cemented carbide cutting tools by micro EDM assisted with high-frequency vibration[J]. International Journal of Advanced Manufacturing Technology, 2016, 82 (9–12): 2157- 2165
doi: 10.1007/s00170-015-7544-x
[20]   XING Y, DENG J, WANG X, et al Experimental assessment of laser textured cutting tools in dry cutting of aluminum alloys[J]. Journal of Manufacture Science and Engineering, 2016, 138: 071006
[21]   XIE J, LUO M J, WU K K, et al Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro-grooved tool[J]. International Journal of Machine Tools and Manufacture, 2013, 73 (1): 25- 36
[22]   XIE J, LI Y H, YANG L F Study on 5-axial milling on micro structured freeform surface using the macro-ball cutter patterned with micro-cutting-edge array[J]. CIRP Annals Manufacturing Technology, 2015, 64 (1): 101- 104
doi: 10.1016/j.cirp.2015.04.075
[1] Zhe-he YAO,Cao-qi ZHANG,Qi-wei SONG,Xi-jiang LU,Jian-qiang KONG,Jian-hua YAO. Ultrasonic assisted laser repair of V-grooves in nickel-based superalloy[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 887-895.
[2] Guang-hao HU,Jin-xue XUE,Wen-ju MA,Zhi-li LONG. Design and experiment of longitudinal-flexural composite ultrasonic transducer for chip bonding[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1335-1340.
[3] Jia-lei ZHAO,Ding ZHOU,Jian-dong ZHANG,Chao-bin HU. Free vibration characteristics of multi-cracked beam based on Chebyshev-Ritz method[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 778-786.
[4] Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.
[5] Fang-fang TAN,Jun-jiang ZHU,Tian-hong YAN,Zhi-qiang GAO,Ling-song HE. Surface roughness prediction of 6061 aluminum alloy based on GA-WPT-ELM[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 40-47.
[6] Pei LIU,Hai-xin ZHU,Wei-guo YANG,Nan-qi HUANGFU. Tests on resonance and vibration mitigation responses of high-rise building under machine excitations[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 102-109.
[7] Yao CHEN,Yuan-qiang CAI,Zhi-gang CAO,Hai-jiang WANG. Influences of pavement irregularity on ground vibrations generated by moving traffic load[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1031-1039.
[8] Zhan-hao HU,Jun-tao FENG,De-ren SHENG,Jian-hong CHEN,Wei LI. Numerical simulation for vibration of interferometric probein wet steam flow field[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1157-1163.
[9] Lin-yuan HU,Wei-qiu CHEN,Zhi-cheng ZHANG,Rong-qiao XU. Free vibration analysis of concrete beams with corrugated steel webs based on Zig-zag theory[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 503-511.
[10] Ke XU,Hong-liang YING,Su-rong HUANG,Qi ZHANG. Electromagnetic noise reduction of permanent magnet synchronous motor by step-skewed rotor[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2248-2254.
[11] Ming-feng HUANG,He-kai YE,Wen-juan LOU,Xuan-tao SUN,Jian-yun YE. Wind-induced vibration and fatigue analysis of long span lattice structures considering distribution of wind speed and direction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1916-1926.
[12] LI Jin-lin, WANG Jia-bin, HE Wen. Electromechanical co-simulation analysis for contactless positioning and vibration isolation platform[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 146-157.
[13] ZHAO Hao-yu, ZHU Chang-sheng. Feedforward decoupling control for magnetically suspended rigid rotor system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1777-1787.
[14] LI Tian-xiang, TONG Gen-shu, ZHANG Lei. Curvature ductility-based seismic force reduction factor of flexure-type structure[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1310-1319.
[15] LI Xiao-chao, XU Wei, ZHOU Xi-lin, ZHAO Li-ping. Experimental study on hydrodynamic and power characteristics of vortex-induced vibration based power generator[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1370-1375.