Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (4): 778-786    DOI: 10.3785/j.issn.1008-973X.2020.04.017
Civil Engineering, Traffic Engineering     
Free vibration characteristics of multi-cracked beam based on Chebyshev-Ritz method
Jia-lei ZHAO(),Ding ZHOU,Jian-dong ZHANG,Chao-bin HU*()
College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
Download: HTML     PDF(925KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The free vibration characteristics of multi-cracked beam were analyzed based on the plane stress theory of elasticity by using Chebyshev-Ritz method. The cracked beams were divided into several sections according to their cracks. The products of boundary functions and Chebyshev polynomials were taken as the functions of the displacement, which had good convergence, making the method applicable for different geometric boundary conditions. The vibration equation of each sub-beam could be obtained by using Ritz method. The vibration characteristic equation of the whole cracked beam was established by the continuity conditions of displacements between adjacent sub-beams. The calculation results accorded well with those available from the literature and the finite element analysis. The effects of the structural parameters such as crack depth and location on the natural vibration characteristics of the beam were analyzed. As the crack depth increases, the natural frequency of the cracked beam decreases, the amplitude of the mode shape increases, and the degree of influence is affected by the location of the crack.



Key wordselasticity      Chebyshev-Ritz method      crack      free vibration      continuity conditions of displacement     
Received: 07 April 2019      Published: 05 April 2020
CLC:  TU 311  
Corresponding Authors: Chao-bin HU     E-mail: zhaojialei1995@njtech.edu.cn;huchaobin@njtech.edu.cn
Cite this article:

Jia-lei ZHAO,Ding ZHOU,Jian-dong ZHANG,Chao-bin HU. Free vibration characteristics of multi-cracked beam based on Chebyshev-Ritz method. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 778-786.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.04.017     OR     http://www.zjujournals.com/eng/Y2020/V54/I4/778


基于Chebyshev-Ritz法分析多裂纹梁自振特性

基于弹性力学平面应力理论,利用Chebyshev-Ritz法分析多裂纹梁的自振特性. 根据裂纹情况将裂纹梁分成若干个梁段,用边界函数与第一类Chebyshev多项式的乘积构造各梁段的位移函数,具有很好的收敛性,能够适用于不同的几何边界条件. 用Ritz法得到各梁段的振动方程,根据各梁段之间的位移连续条件整合方程,建立整个裂纹梁的振动特征方程. 计算结果与有限元分析和相关文献数据吻合很好. 分析裂纹深度和位置对自振特性的影响. 随着裂纹深度的增大,裂纹梁的频率减小,振型的幅值变大,且影响的程度会受裂纹的位置影响.


关键词: 弹性力学,  Chebyshev-Ritz法,  裂纹,  自由振动,  位移连续条件 
Fig.1 Analytical model of beam with two cracks of different depths
Fig.2 Analytical model of beam with two cracks of same depth
Fig.3 Analytical model of beam with three cracks of different depths
Fig.4 Flow chart for calculation of multi-cracked beam
h/L mn Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8
0.1 40×10 0.183 7 0.488 4 0.831 2 0.987 1 1.341 8 1.774 1 1.949 6 2.397 6
0.1 50×10 0.183 3 0.488 2 0.828 5 0.986 8 1.341 2 1.769 8 1.948 7 2.397 0
0.1 50×15 0.183 3 0.488 2 0.828 5 0.986 8 1.341 1 1.769 8 1.948 7 2.397 0
0.1 60×15 0.183 1 0.488 0 0.826 7 0.986 6 1.340 7 1.766 8 1.948 1 2.396 6
0.2 40×10 0.436 8 1.055 1 1.379 3 1.611 6 2.536 7 2.620 4 3.272 4 4.115 9
0.2 50×10 0.436 3 1.054 7 1.378 7 1.608 7 2.535 7 2.617 3 3.271 2 4.113 8
0.2 50×15 0.436 2 1.054 6 1.378 6 1.608 5 2.535 7 2.617 1 3.271 1 4.113 6
0.2 60×15 0.435 8 1.054 4 1.378 2 1.606 6 2.535 0 2.614 9 3.270 3 4.112 2
0.3 40×10 0.669 8 1.483 6 1.684 9 2.128 9 3.150 1 3.347 0 4.017 4 4.273 0
0.3 50×10 0.669 2 1.482 9 1.684 4 2.125 6 3.147 7 3.344 5 4.016 5 4.271 3
0.3 50×15 0.669 2 1.482 8 1.684 3 2.125 2 3.147 4 3.344 4 4.016 4 4.271 1
0.3 60×15 0.668 8 1.482 3 1.684 0 2.123 0 3.145 7 3.342 5 4.015 7 4.270 0
Tab.1 Convergence of first-eighth frequency parameters Ω of fixed beam
Fig.5 Analytical model of cracked fixed beam in ANSYS
参数 方法 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8
c1/h=0.2,c2/h=0.1 本文方法 0.188 1 0.491 9 0.866 2 0.993 5 1.353 7 1.825 4 1.968 2 2.407 0
c1/h=0.2,c2/h=0.1 有限元法 0.187 5 0.491 8 0.862 2 0.993 2 1.353 2 1.817 9 1.965 8 2.406 6
c1/h=0.3,c2/h=0.2 本文方法 0.183 1 0.488 0 0.826 7 0.986 6 1.340 7 1.766 8 1.948 1 2.396 6
c1/h=0.3,c2/h=0.2 有限元法 0.182 1 0.487 7 0.820 9 0.986 1 1.339 6 1.755 8 1.945 8 2.395 1
c1/h=0.4,c2/h=0.2 本文方法 0.176 9 0.487 6 0.797 4 0.986 3 1.338 1 1.693 4 1.932 7 2.389 9
c1/h=0.4,c2/h=0.2 有限元法 0.175 7 0.487 3 0.791 1 0.985 9 1.336 5 1.680 7 1.930 7 2.387 2
Tab.2 Comparison of results of fixed beam with those from FEA(h/L=0.1,d1/L=0.5,d2/L=0.8)
参数 方法 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8
c1/h=0.2,c2/h=0.1 本文方法 0.085 6 0.336 8 0.692 1 0.978 5 1.177 9 1.668 3 1.977 9 2.259 1
c1/h=0.2,c2/h=0.1 有限元法 0.085 1 0.336 5 0.688 3 0.976 1 1.177 5 1.662 8 1.977 2 2.258 3
c1/h=0.3,c2/h=0.2 本文方法 0.081 3 0.329 0 0.655 5 0.953 6 1.169 6 1.632 8 1.954 3 2.243 9
c1/h=0.3,c2/h=0.2 有限元法 0.080 6 0.328 4 0.649 7 0.949 6 1.168 7 1.626 5 1.952 4 2.242 0
c1/h=0.4,c2/h=0.2 本文方法 0.076 3 0.328 7 0.623 6 0.926 1 1.167 4 1.599 1 1.954 1 2.237 6
c1/h=0.4,c2/h=0.2 有限元法 0.075 2 0.328 1 0.616 6 0.921 1 1.166 2 1.593 5 1.952 4 2.234 7
Tab.3 Comparison of results of simply-supported beam with those from FEA(h/L=0.1,d1/L=0.5,d2/L=0.8)
参数 方法 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8
c1/h=0.2,c2/h=0.1 本文方法 0.031 6 0.185 2 0.493 4 0.501 0 0.886 0 1.386 9 1.476 7 1.881 9
c1/h=0.2,c2/h=0.1 有限元法 0.031 6 0.184 2 0.492 7 0.500 7 0.881 6 1.385 8 1.474 4 1.876 0
c1/h=0.3,c2/h=0.2 本文方法 0.031 3 0.177 0 0.485 2 0.493 4 0.839 7 1.359 1 1.449 0 1.840 2
c1/h=0.3,c2/h=0.2 有限元法 0.031 2 0.175 4 0.483 9 0.492 6 0.833 3 1.356 5 1.444 8 1.834 0
c1/h=0.4,c2/h=0.2 本文方法 0.030 7 0.166 8 0.475 9 0.491 9 0.812 4 1.355 6 1.420 3 1.809 4
c1/h=0.4,c2/h=0.2 有限元法 0.030 6 0.164 7 0.473 8 0.491 1 0.806 2 1.352 4 1.414 8 1.804 3
Tab.4 Comparison of results of cantilevered beam with those from FEA(h/L=0.1,d1/L=0.5,d2/L=0.8)
参数 方法 Ω1
d2/L=0.35 d2/L=0.45 d2/L=0.5
d1/L=0.25,c1/h=0.05 有限元解 0.087 8 0.087 7 0.087 7
d1/L=0.25,c1/h=0.05 本文解法 0.088 1 0.088 0 0.088 0
d1/L=0.25,c2/h=0.10 Lourdes解 0.089 7 0.089 6 0.089 6
d1/L=0.25,c2/h=0.10 有限元解 0.083 7 0.082 9 0.082 8
c1/h=0.15,c2/h=0.25 本文解法 0.084 6 0.084 0 0.083 9
c1/h=0.15,c2/h=0.25 Lourdes解 0.087 4 0.087 0 0.086 9
Tab.5 Comparison of first frequency parameter Ω1 with Lourdes’s[15] results
Fig.6 First-eighth frequency parameters of cracked fixed beams with different crack depths
Fig.7 First-third modal shapes of W of fixed beams with different c1
Fig.8 First-third modal shapes of W of fixed beams with different c2
[1]   CHONDROS T G, DIMAROGONAS A D Identification of cracks in welded joints of complex structures[J]. Journal of Sound and Vibration, 1980, 69 (4): 531- 538
doi: 10.1016/0022-460X(80)90623-9
[2]   KHAJI N, SHAFIEI M, JALALPOUR M Closed-form solutions for crack detection problem of Timoshenko beams with various boundary conditions[J]. International Journal of Mechanical Sciences, 2009, 51 (9/10): 667- 681
[3]   马一江, 陈国平 含多条裂纹梁的模态与振动疲劳寿命分析[J]. 振动、测试与诊断, 2017, 37 (2): 307- 313
MA Yi-jiang, CHEN Guo-ping Analysis of mode and vibration fatigue life of beam with multiple cracks[J]. Journal of Vibration, Measurement and Diagnosis, 2017, 37 (2): 307- 313
[4]   ZHAO X, ZHAO Y R, GAO X Z, et al Green’s functions for the forced vibrations of cracked Euler–Bernoulli beams[J]. Mechanical Systems and Signal Processing, 2016, 68-69: 155- 175
doi: 10.1016/j.ymssp.2015.06.023
[5]   ZHAO X, HU Q J, CROSSLEY W, et al Analytical solutions for the coupled thermoelastic vibrations of the cracked Euler-Bernoulli beams by means of Green’s functions[J]. International Journal of Mechanical Sciences, 2017, 128-129: 37- 53
doi: 10.1016/j.ijmecsci.2017.04.009
[6]   KIM K H, KIM J H Effect of a crack on the dynamic stability of a free–free beam subjected to a follower force[J]. Journal of Sound and Vibration, 2000, 233 (1): 119- 135
doi: 10.1006/jsvi.1999.2793
[7]   杨鄂川, 李映辉, 赵翔, 等 含旋转运动效应裂纹梁横向振动特性的研究[J]. 应用力学学报, 2017, 34 (6): 1160- 1165
YANG E-chuan, LI Ying-hui, ZHAO Xiang, et al Investigations of transverse vibration characteristics of a rotating beam with a crack[J]. Chinese Journal of Applied Mechanics, 2017, 34 (6): 1160- 1165
[8]   马爱敏, 张治君, 李群 基于连续抗弯刚度模型的裂纹梁动力指纹损伤识别[J]. 应用力学学报, 2019, 36 (1): 14- 21
MA Ai-min, Zhang Zhi-jun, LI Qun Dynamic fingerprint damage identification method for cracked beams based on the continuous bending stiffness model[J]. Chinese Journal of Applied Mechanics, 2019, 36 (1): 14- 21
[9]   李兆军, 龙慧, 刘洋, 等 基于有限元位移模式的含裂纹梁结构动力学模型[J]. 中国机械工程, 2014, 25 (12): 1563- 1566
LI Zhao-jun, LONG Hui, LIU Yang, et al Dynamics equation of cracked beam based on finite element displacement mode[J]. China Mechanical Engineering, 2014, 25 (12): 1563- 1566
doi: 10.3969/j.issn.1004-132X.2014.12.001
[10]   郁杨天, 章青, 顾鑫 近场动力学与有限单元法的混合模型与隐式求解格式[J]. 浙江大学学报: 工学版, 2017, 51 (7): 1324- 1330
YU Yang-tian, ZHANG Qing, GU Xin Hybrid model of peridynamics and finite element method under implicit schemes[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (7): 1324- 1330
[11]   胡霖远, 陈伟球, 张治成, 等 基于Zig-zag理论的波形钢腹板梁自由振动分析[J]. 浙江大学学报: 工学版, 2019, 53 (3): 503- 511
HU Lin-yuan, CHEN Wei-qiu, ZHANG Zhi-cheng, et al Free vibration analysis of concrete beams with corrugated steel webs based on Zig-zag theory[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (3): 503- 511
[12]   蒋杰, 周叮 两端有裂纹固支深梁的振动特性分析[J]. 建筑结构学报, 2018, 39 (Suppl.2): 183- 190
JIANG Jie, ZHOU Ding Analysis of vibration characteristics of clamped-clamped deep beams with cracks at ends[J]. Journal of Building Structures, 2018, 39 (Suppl.2): 183- 190
[13]   ZHOU D, CHEUNG Y K Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method[J]. International Journal of Solids and Structures, 2002, 39 (26): 6339- 6353
[14]   ZHOU D. Three-dimensional vibration analysis of structural elements using Chebyshev-Ritz method [M]. Beijing: Science Press, 2007.
[1] Hong-hui WANG,Xin FANG,De-jiang LI,Gui-jie LIU. Fatigue crack growth prediction method under variable amplitude load based on dynamic Bayesian network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 280-288.
[2] Zhong-nan LI,Hai-bo ZHU,Yang ZHAO,Xue LUO,Rong-qiao XU. Thermal stress analysis and crack control of assembled bridge pier[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 46-54.
[3] Ya-ting ZHANG,Roesler Jeffery. Cracking of continuously reinforced concrete pavement based on large-scale model test[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1194-1201.
[4] Xing-lang FAN,Sheng-jie GU,Jia-fei JIANG,Xi WU. Computational method of punching-shear capacity of concrete slabs reinforced with FRP bars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1058-1067.
[5] Jun LUO,Xu-dong SHAO,Jun-hui CAO,Wei FAN,Bi-da PEI. Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 909-920.
[6] Hai-long WANG,Yuan-jian WU,Jia-yan LING,Xiao-yan SUN. Bond degradation between corroded stainless steel bar and concrete[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 843-850.
[7] Xiao-wei LIAO,Yuan-qing WANG,Jian-guo WU,Yong-jiu SHI. Fatigue performance of non-load-carrying cruciform fillet-welded joints at low ambient temperature[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2018-2026.
[8] Zu-wei HUANG,Jun-qing LEI,Cheng-zhong GUI,Shu-lun GUO. Experimental study of fatigue on orthotropic steel deck of cable-stayed bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1071-1082.
[9] Lin-yuan HU,Wei-qiu CHEN,Zhi-cheng ZHANG,Rong-qiao XU. Free vibration analysis of concrete beams with corrugated steel webs based on Zig-zag theory[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 503-511.
[10] Fei-bin YUAN,Wei-liang JIN,Jiang-hong MAO,Jin-quan WANG,Wei-jie FAN,Jin XIA. Effect of chloride removal and corrosion prevention for cracked concrete based on bi-directional electro-migration rehabilitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2317-2324.
[11] Han ZHANG,Xin-li HU,Shuang-shuang WU. Damage evolution of soil-rock mixture based on Fourier series approximations method[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1955-1965.
[12] LIU Cheng-bin, LIU Wen-yao, CHEN Wei-qiu, WANG Hui-ming, LV Chao-feng. Generalized thermal shock analysis of piezoelectric spherical shell based on L-S theory[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1185-1193.
[13] XU Wen-shuai, YANG Lian-zhi, GAO Yang. Plane problems of 2D decagonal quasicrystals of piezoelectric effect with Griffith crack[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 487-496.
[14] QIN Hong-yuan, LIU Yi-ming, HUANG Dan. Peridynamic modelling and simulation for multiple crack propagation in brittle materials[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 497-503.
[15] DAI Li-zhao, WANG Lei, ZHANG Jian-ren, YANG Ri-hua. Filling of strand corrosion products and crack width prediction[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 97-105.