Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (11): 2076-2084    DOI: 10.3785/j.issn.1008-973X.2019.11.004
Mechanical Engineering     
Influence of distorted inflow caused by steam generator on flow properties of reactor coolant pump
Yue-hui WANG1(),Cong LIU1,Peng-fei WANG2,Zhong-bin XU1,*(),Xiao-dong RUAN3,Xin FU3
1. Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
2. Zhejiang University City College, Hangzhou 310015, China
3. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(2298KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A united model for the reactor coolant pump (RCP) and the channel head was generated by using the method of computational fluid dynamic, in order to analyze the influence of the distorted inflow caused by the steam generator (SG) on the flow property of RCP. Three-dimensional steady and transient numerical simulations in normal operating conditions were performed by using multiple frames of reference and sliding interface technology. The velocity distribution of distorted inflow was quantitatively characterized by inflow distortion degree and mean drift angle, and the regularization helicity method was used to capture the flow characteristics of vortex core for the impeller of RCP. Results show that with the comparison of uniform inflow, the inflow field of the RCP is complicated by the distorted inflow, and the turbulent kinetic energy and turbulent eddy dissipation are increased while the hydraulic efficiency of the RCP is decreased. Obvious asymmetric vortex core regions form in the RCP inlet, causing differences between the flow patterns of the impeller flow channels, and then causing the non-uniform distribution of the pressure and velocity within the impeller. Furthermore, due to the distorted inflow, the flow distribution of each flow channel is uneven, increasing the load fluctuation. The distorted inflow has an adverse effect on the RCP, reducing the stability and safety of the operation of RCP.



Key wordsreactor coolant pump      steam generator      distorted inflow      turbulent kinetic energy      computational fluid dynamic (CFD)     
Received: 11 September 2018      Published: 21 November 2019
CLC:  TL 353  
Corresponding Authors: Zhong-bin XU     E-mail: wangyuehui@zju.edu.cn;xuzhongbin@zju.edu.cn
Cite this article:

Yue-hui WANG,Cong LIU,Peng-fei WANG,Zhong-bin XU,Xiao-dong RUAN,Xin FU. Influence of distorted inflow caused by steam generator on flow properties of reactor coolant pump. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2076-2084.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.11.004     OR     http://www.zjujournals.com/eng/Y2019/V53/I11/2076


蒸汽发生器致畸变入流对核主泵流动性能的影响

为了探究由蒸汽发生器(SG)引起的畸变入流对核主泵(RCP)流动性能的影响,采用计算流体力学方法,建立核主泵与下封头的联合计算模型;利用多参考坐标系模型和滑移交界面技术,开展运行工况下的全三维稳态和瞬态数值模拟;采用入流畸变度和平均偏流角公式定量表征畸变入流的流场速度分布,通过正则化螺旋度法捕捉核主泵叶轮的涡流流动特征. 研究结果表明:与均匀入流相比,畸变入流复杂化了核主泵进口流场,导致核主泵的湍动能和湍耗散增大,降低了主泵的水力效率;在泵的进口流场形成了明显的非对称分布的涡核区域,引起叶轮各流道流态产生差异,造成叶轮内部压力和速度分布不均;导致各流道流量分配不均,加剧叶轮受载波动;降低其运行的稳定性和安全性.


关键词: 核主泵,  蒸汽发生器,  畸变入流,  湍动能,  计算流体力学(CFD) 
Fig.1 Position diagram of reactor coolant pump and channel head of steam generator
Fig.2 Geometry model of united model for RCP and SGCH
Fig.3 Computational domain grids of united model for RCP and SGCH
Fig.4 Grid independence verification of united model for RCP and SGCH
设计参数 数值
流量/(m3?h?1) 17 886
扬程/m >111.3
同步转速/(r·min?1) 1 800
设计压力/MPa 17.2
设计温度/K 616
比转速 428
Tab.1 Geometry parameters of impeller of RCP
Fig.5 Principle diagram of test bench for head of RCP
Fig.6 Comparison diagram of volume flow-head of RCP between numerical and experimental results
Fig.7 Diagram of location of different sections of RCP inlet
Fig.8 Variation of inflow distortion degree and mean drift angle
Fig.9 Regularization helicity distribution of impeller inlet flow field of RCP in uniform inflow condition
Fig.10 Regularization helicity distribution of impeller inlet flow field of RCP in distorted inflow condition
Fig.11 Comparison of impeller blade pressure of RCP
Fig.12 Comparison of impeller blade velocity of RCP
Fig.13 Streamline diagram of fluid field of RCP
Fig.14 Position of blade of RCP and SGCH
Fig.15 Volume flow distribution diagram for each flow passage of impeller of RCP
Fig.16 Comparison of turbulence eddy dissipation of RCP
Fig.17 Comparison of turbulent kinetic energy of RCP
[1]   蔡龙, 张丽平 浅谈压水堆核电站主泵[J]. 水泵技术, 2007, (4): 1- 5
CAI Long, ZHANG Li-ping Discussion on the main pump of PWR nuclear power plant[J]. Pump Technology, 2007, (4): 1- 5
[2]   张芷模, 刘世辉, 郭鹏 AP1000核主泵叶轮典型质量问题及监造预防措施[J]. 水泵技术, 2016, (3): 31- 36
ZHANG Zhi-mo, LIU Shi-hui, GUO Peng Typical quality problems and preventive measures for AP1000 nuclear main pump impeller[J]. Pump Technology, 2016, (3): 31- 36
[3]   仇宝云, 林海江, 黄季艳, 等 大型立式轴流泵叶片进口流场及其对水泵影响研究[J]. 机械工程学报, 2005, 41 (4): 28- 34
QIU Bao-yun, LIN Hai-jiang, HUANG Ji-yan, et al Study on flow field in blade inlet of large vertical axial-flow pump and its influence on pump[J]. Chinese Journal of Mechanical Engineering, 2005, 41 (4): 28- 34
doi: 10.3321/j.issn:0577-6686.2005.04.006
[4]   颜禹, 陆晓峰, 朱晓磊 进口弯管及前置扰流子对离心泵性能影响[J]. 农业工程学报, 2013, (20): 74- 81
YAN Yu, LU Xiao-feng, ZHU Xiao-lei Effect of import bend and forward turbolator on performance of centrifugal pump[J]. Trasactions of the Chinese Society of Agricaltural Engineering, 2013, (20): 74- 81
doi: 10.3969/j.issn.1002-6819.2013.20.011
[5]   DUAN X, MAO G, YAN J, et al Study on the characteristic of self-excited cavitation oscillation in pump-piping system[J]. Advanced Materials Research, 2011, 268–270: 148- 153
doi: 10.4028/www.scientific.net/AMR.268-270.148
[6]   黄伟, 张文其, 陶文铨, 等. 蒸汽发生器下封头/主泵连接处流动特性试验研究[J]. 核动力工程, 2002, 23(增1): 38-42.
HUANG Wei, ZHANG Wen-qi, TAO Wen-shuang, et al. Flow characteristics experimental study within connection between steam generator channel head and pump suction[J]. Nuclear Power Engineering, 2002, 23(suppl.1): 38-42.
[7]   夏栓, 冯斌, 张海军 AP1000核岛主泵流场数值模拟[J]. 核技术, 2013, 36 (4): 101- 107
XIA Shuan, FENG Bin, ZHANG Hai-jun Simulation of AP1000 reactor coolant pump flow field CFD[J]. Nuclear Techniques, 2013, 36 (4): 101- 107
[8]   WANG Y, WANG P, TAN X, et al Research on the non-uniform inflow characteristics of the canned nuclear coolant pump[J]. Annals of Nuclear Energy, 2018, 115: 423- 429
doi: 10.1016/j.anucene.2018.02.007
[9]   侯向陶, 王鹏飞, 许忠斌, 等 蒸汽发生器下封头对核主泵入口流场影响[J]. 排灌机械工程学报, 2016, 34 (4): 277- 282
HOU Xiang-tao, WANG Peng-fei, XU Zhong-bin, et al Influence of steam generator channel head on reactor coolant pump inflow field[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34 (4): 277- 282
doi: 10.3969/j.issn.1674-8530.15.0207
[10]   CHENG H, LI H, YIN J, et al. Investigation of the distortion suction flow on the performance of the canned nuclear coolant pump [C]// ISFMFE - 6th International Symposium on Fluid Machinery and Fluid Engineering. Wuhan: IET Conference Publications, 2014: 166-171.
[11]   姜茂华, 邹志超, 王鹏飞, 等 基于额定参数的核主泵惰转工况计算模型[J]. 原子能科学技术, 2014, 48 (8): 1435- 1439
JIANG Mao-hua, ZOU Zhi-chao, WANG Peng-fei, et al Coast-down model based on rated parameters of reactor coolant pump[J]. Atomic Energy Science and Technology, 2014, 48 (8): 1435- 1439
doi: 10.7538/yzk.2014.48.08.1435
[12]   马腾跃, 王鹏飞, 许忠斌, 等 蒸汽发生器换热管流量分配及其对核主泵入口流场的影响[J]. 核动力工程, 2018, 39 (4): 58- 62
MA Teng-yue, WANG Peng-fei, XU Zhong-bin, et al Flow distribution of heat exchanger tubes in a steam generator and its effect on flow field at entrance of reactor coolant pump[J]. Nuclear Power Engineering, 2018, 39 (4): 58- 62
[13]   SCHULZ T L Westinghouse AP1000 advanced passive plant[J]. Nuclear Engineering and Design, 2006, 236 (suppl.14–16): 1547- 1557
[14]   邴浩, 曹树良, 王玉川 湍流模型对混流泵性能预测的影响[J]. 农业机械学报, 2013, 44 (11): 42- 47
BING Hao, CAO Shu-liang, WANG Yu-chuan Influence of turbulence model on performance prediction of mixed-flow pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44 (11): 42- 47
doi: 10.6041/j.issn.1000-1298.2013.11.008
[15]   杨从新, 高强, 黎义斌, 等 不同湍流模型在混流泵数值模拟中的应用与评价[J]. 兰州理工大学学报, 2014, 40 (5): 51- 55
YANG Cong-xin, GAO Qiang, LI Yi-bin, et al Application of different turbulence models in numerical simulation of mixed-flow pump and its evaluation[J]. Journal of Lanzhou University of Technology, 2014, 40 (5): 51- 55
doi: 10.11662/j.issn.1673-5196.2014.05.012
[16]   LAUNDER B E, SPALDING D B. Lectures in mathematical models of turbulence [M]. London: Academic Press, 1972: 90-110.
[17]   WANG L Q, YIN J L, JIAO L, et al Numerical investigation on the " S” characteristics of a reduced pump turbine model[J]. Science China Technological Sciences, 2011, 54 (5): 1259- 1266
doi: 10.1007/s11431-011-4295-2
[18]   郭素娜, 孙立军, 方艳, 等 导流件和叶轮强作用涡轮流量计的CFD仿真方法[J]. 化工自动化及仪表, 2013, 40 (10): 1276- 1280
GUO Su-na, SUN Li-jun, FANG Yan, et al CFD simulation method for turbine flowmeter with strong action from guide vane and impellor[J]. Chemical Automation and Instrument, 2013, 40 (10): 1276- 1280
doi: 10.3969/j.issn.1000-3932.2013.10.019
[19]   GONZA?LEZ J, SANTOLARIA C Unsteady flow structure and global variables in a centrifugal pump[J]. Journal of Fluids Engineering, 2006, 128 (5): 937- 946
doi: 10.1115/1.2234782
[20]   苏宋洲, 王鹏飞, 许忠斌, 等 核主泵启动过程压力脉动和径向力研究[J]. 核动力工程, 2017, (3): 114- 118
SU Song-zhou, WANG Peng-fei, XU Zhong-bin, et al Study on pressure fluctuation and radial force during startup of reactor coolant pump[J]. Nuclear Power Engineering, 2017, (3): 114- 118
[21]   苏宋洲, 王鹏飞, 许忠斌, 等 核主泵升速过程最高转速设定方法研究[J]. 核动力工程, 2017, 38 (5): 101- 105
SU Song-zhou, WANG Peng-fei, XU Zhong-bin, et al Study on maximum speed setting standard during speed up process of reactor coolant pump[J]. Nuclear Power Engineering, 2017, 38 (5): 101- 105
[22]   朱红耕, 袁寿其, 严登丰, 等 大型泵站进水流道技术改造优选设计[J]. 水力发电学报, 2006, (2): 51- 55
ZHU Hong-geng, YUAN Shou-qi, YAN Deng-feng, et al Numerical simulation and experimental study on bell-shaped suction box under non-symmetric inflow conditions[J]. Journal of Hydroelectric Engineering, 2006, (2): 51- 55
doi: 10.3969/j.issn.1003-1243.2006.02.011
[23]   李彦军, 颜红勤, 严登丰, 等 非对称入流工况下钟形进水流道数值模拟试验研究[J]. 中国农村水利水电, 2008, 2 (2): 70- 73
LI Yan-jun, YAN Hong-qin, YAN Deng-feng, et al Numerical simulation and experimental study on bell-shaped suction box under non-symmetric inflow conditions[J]. China Rural Water and Hydropower, 2008, 2 (2): 70- 73
[24]   DEGANI D, SEGINER A, LEVY Y Graphical visualization of vortical flows by means of helicity[J]. AIAA Journal, 1990, 28 (8): 1347- 1352
doi: 10.2514/3.25224
[1] HU You rui, LIU Yan, WANG Yang, LIU Jian zhong, ZHOU Jun hu, HU Wei, LI Hong wei. Numerical simulation and orthogonal optimization design for high humidity hydrogen oxygen injector[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2403-2409.
[2] YAO Hua, SHENG De-ren, CHEN Jian-hong, LI Wei, HONG Rong-hua. Thermodynamic analysis of gravity heatpipe steam generator[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1678-1684.