Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (11): 2248-2254    DOI: 10.3785/j.issn.1008-973X.2019.11.024
Electrical Engineering     
Electromagnetic noise reduction of permanent magnet synchronous motor by step-skewed rotor
Ke XU1(),Hong-liang YING1,2,Su-rong HUANG1,Qi ZHANG1,*()
1. School of Electromechanics and Automation, Shanghai University, Shanghai 200444, China
2. Shanghai Edrive Co. Ltd, Shanghai 201806, China
Download: HTML     PDF(982KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to weaken the electromagnetic force harmonics caused by the tooth harmonics and effectively suppress the electromagnetic noise of the motor, the analytical formula of radial electromagnetic force wave of step-skew was derived, the mechanism of step-skew suppressing the electromagnetic noise of permanent magnet synchronous motor was analyzed, and the relationship between different segments of step-skew and the order of weakened tooth harmonics was discussed. The radial electromagnetic force wave and electromagnetic noise of a 48-slot 8-pole permanent magnet synchronous motor with different segments of step-skew were simulated and analyzed based on MANATEE simulation platform. The variation of electromagnetic force harmonics with and without step-skew was obtained, and the influence of the step-skew on electromagnetic noise was further analyzed. Results show that when the order of tooth harmonics is integral multiple of segments of step-skew, step-skew cannot weaken the order of tooth harmonics. When the order of tooth harmonics is non-integral multiple of segments, the tooth harmonics and the electromagnetic noise can be effectively suppressed. The measured noise values of the prototype were in good agreement with the simulation results, which verified the mechanism of step-skew suppressing electromagnetic noise of motor and the correctness of the simulation analysis.



Key wordspermanent magnet synchronous motor      step-skew      tooth harmonics      radial electromagnetic force wave      vibration noise     
Received: 07 September 2018      Published: 21 November 2019
CLC:  TM 351  
Corresponding Authors: Qi ZHANG     E-mail: xuke1993@shu.edu.cn;qizhang@staff.shu.edu.cn
Cite this article:

Ke XU,Hong-liang YING,Su-rong HUANG,Qi ZHANG. Electromagnetic noise reduction of permanent magnet synchronous motor by step-skewed rotor. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2248-2254.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.11.024     OR     http://www.zjujournals.com/eng/Y2019/V53/I11/2248


转子分段斜极对永磁同步电机电磁噪声的削弱影响

为了削弱由齿谐波引起的电磁力谐波从而有效抑制电机的电磁噪声,推导转子分段斜极的径向电磁力波的解析式,分析分段斜极对永磁同步电机电磁噪声的抑制机理,讨论不同斜极分段数与削弱的齿谐波阶次之间的关系. 基于MANATEE仿真平台,对48槽8极永磁同步电机进行不同斜极分段数下的径向电磁力波和电磁噪声仿真分析,得到斜极分段前后主要阶次的径向电磁力谐波在不同斜极分段数下的变化规律,分析分段斜极对电磁噪声的影响. 研究结果表明:当齿谐波阶次为分段数的整数倍时,转子斜极无法削弱该阶齿谐波;当为非整数倍时,该阶次的齿谐波可以得到有效抑制,电磁噪声明显下降. 样机的实测噪声与仿真结果基本吻合,验证了转子分段斜极降低电机噪声的机理及仿真分析的正确性.


关键词: 永磁同步电机,  分段斜极,  齿谐波,  径向电磁力波,  振动噪声 
分类 r ωr Pr
1 ν±μp ω1±ωμ FνΛ0FμΛ0(2μ0
2 ν±μp±kZ ω1±ωμ FνΛ0FμΛk(4μ0
3 ν±μp±kZ ω1±ωμ FνΛkFμΛ0(4μ0
4 ν±μp±2kZ ω1±ωμ FνΛ0FμΛk(8μ0
Tab.1 Characteristic parameters of radial electromagnetic force wave
分类 fr
6f 12f 18f 24f
1 5/?5, 7/7 11/?11, 13/13 17/?17, 19/19 23/?23, 25/25
2 5/7, 5/?17 11/1, 11/?23 17/?5, 17/?29 23/?11
3 7/?5, 7/19 13/1, 13/25 19/7 25/13
4 5/19, 7/?17 11/13, 13/?11 17/7, 19/?5 23/1, 25/1
Tab.2 Harmonic sources of 0th electromagnetic force wave of 48-slot 8-pole motor
分类 fr1)
10f 14f 22f 26f
1)注:仅列出与齿谐波相关的径向电磁力谐波来源
1 9/?11, 11/13 13/?11, 15/13 21/?23, 23/25 25/?27, 27/25
2 ? 13/1 ? ?
3 11/1, 11/25 15/25 23/13 27/17
4 9/13, 11/?11 13/13, 15/?11 21/1 25/1
Tab.3 Harmonic sources of 8th electromagnetic force wave of 48-slot 8-pole motor
参数 数值
定子槽数 48
极数 8
最大转速/(r·min?1 9 500
额定转速/(r·min?1 4 000
最大扭矩/(N·m) 200
机壳外径/mm 270
电机轴向长度/mm 105
转子分段数 2
转子斜极角度/(°) 3.75
Tab.4 Technical parameters of prototype
Fig.1 No-load air gap magnetic density simulation results in different segment numbers
Fig.2 Harmonic analysis of radial electromagnetic force in different segment numbers
Fig.3 A-weighted sound pressure level sonagram at full speed conditions
Fig.4 A-weighted sound level comparison in different segment numbers of step-skewed rotor
Fig.5 Noise test experiment of prototype
n0/(r·min?1 Lp-test/dB Lp/dB
2 500 55.9 53.2
4 000 60.5 59.2
5 500 56.6 51.2
7 000 63.7 58.1
8 500 69.3 65.9
9 500 66.7 63.3
Tab.5 Comparison between measured noise values and simulation results
[1]   DEACONU A S, CHIRIL A I, NVRPESCU V, et al. Thermal analysis of a PMSM for an intermittent periodic duty cycle [C]// 2013 8th International Symposium on IEEE, Advanced Topics in Electrical Engineering (ATEE). Bucharest: IEEE, 2013: 1-4.
[2]   FINLEY W R. Advantages of optimizing motor and drives to ensure best performance and total cost of ownership [C]// Cement Industry Technical Conference. Shenzhen: IEEE, 2014: 1-14.
[3]   REDDY P B, El-REFAIE A M, KUM-KANG H, et al Comparison of interior and surface PM machines equipped with fractional-slot concentrated windings for hybrid traction applications[J]. IEEE Transactions on Energy Conversion, 2012, 27 (3): 593- 602
doi: 10.1109/TEC.2012.2195316
[4]   STUCKMANN C Noise and vibration levels of modern electric motors[J]. PCIM Europe, 2016, 5: 1345- 1352
[5]   VALAVI M, NYSVEEN A, NILSSEN R, et al Influence of pole and slot combinations on magnetic forces and vibration in low-speed PM wind generators[J]. IEEE Transactions on Magnetics, 2014, 50 (5): 1- 11
[6]   DORRELL D G, POPESCU M, LONEL D M Unbalanced magnetic pull due to asymmetry and low-level static rotor eccentricity in fractional-slot brushless permanent-magnet motors with surface-magnet and consequent-pole rotors[J]. IEEE Transactions on Magnetics, 2010, 6 (7): 2675- 2685
[7]   CASSAT A, ESPANET C A practical solution to mitigate vibrations in industrial PM motors having concentric windings[J]. IEEE Transactions on Industry Applications, 2012, 48 (5): 1526- 1538
doi: 10.1109/TIA.2012.2210172
[8]   JANG I S, HAM S H, KIM W H, et al Method for analyzing vibrations due to electromagnetic force in electric motors[J]. IEEE Transactions on Magnetics, 2014, 50 (2): 297- 300
doi: 10.1109/TMAG.2013.2280954
[9]   谢颖, 刘海松, 吕森, 等 计及转子斜槽时笼型感应电机电磁振动变化规律的研究[J]. 中国电机工程学报, 2015, 35 (15): 3948- 3955
XIE Ying, LIU Hai-song, LV Sen, et al Study on the variation laws of electromagnetic vibration considered the skewed rotor in a squirrel-cage induction motor[J]. Proceedings of the CSEE, 2015, 35 (15): 3948- 3955
[10]   ZHANG Y Y, GENG H P, ZHOU J, et al. Analysis of electromagnetic force waves of solid cylindrical permanent magnet synchronous motors [C]// 2018 IEEE International Conference on Mechatronics and Automation, 2018, 5(8): 689-694.
[11]   李晓华, 黄苏融, 李良梓 电动汽车用永磁同步电机振动噪声的计算与分析[J]. 电机与控制学报, 2013, 17 (8): 37- 42
LI Xiao-hua, HUANG Su-rong, LI Liang-zi Calculation and analysis of vehicle vibration and noise of permanent magnet synchronous motor applied in electric vehicle[J]. Electric Machines and Control, 2013, 17 (8): 37- 42
doi: 10.3969/j.issn.1007-449X.2013.08.006
[12]   YANG H D, CHEN Y S Influence of radial force harmonics with low mode number on electromagnetic vibration of PMSM[J]. IEEE Journals and Magazines, 2014, 29 (1): 38- 45
[13]   杨浩东, 陈阳生 分数槽永磁同步电机电磁振动的分析与抑制[J]. 中国电机工程学报, 2011, 31 (24): 83- 89
YANG Hao-dong, CHEN Yang-sheng Electromagnetic vibration analysis and suppression of permanent magnet synchronous motor with fractional slot combination[J]. Proceedings of the CSEE, 2011, 31 (24): 83- 89
[14]   陈永校, 诸自强, 应善成. 电机噪声的分析和控制[M]. 杭州: 浙江大学出版社, 1987: 171-174.
[15]   李晓华, 刘成健, 梅柏杉, 等 电动汽车IPMSM宽范围调速振动噪声源分析[J]. 中国电机工程学报, 2018, 38 (17): 5219- 5227
LI Xiao-hua, LIU Cheng-jian, MEI Bo-shan, et al Vibration and noise sources analysis of IPMSM for electric vehicles in a wide-speed range[J]. Proceedings of the CSEE, 2018, 38 (17): 5219- 5227
[16]   KUMAR D, KOTTALGI S A multiphysics optimization approach to design low noise and light weight electric powertrain noise, vibration and harshness (NVH) prediction of electric powertrain using finite element analysis (FEA) and optimization[J]. IEEE Industrial Electronics Society, 2017, 2 (17): 1692- 1697
[17]   JEAN L B Fast prediction of variable-speed acoustic noise due to magnetic forces in electrical machines[J]. IEEE Early Access Articles, 2016, 1 (16): 2259- 2265
[18]   左曙光, 刘晓璇, 于明湖, 等 永磁同步电机电磁振动数值预测与分析[J]. 电工技术学报, 2017, 32 (1): 159- 167
ZUO Shu-guang, LIU Xiao-xuan, YU Ming-hu, et al Numerical prediction and analysis of electromagnetic vibration in permanent magnet synchronous motor[J]. Transaction of China Electrotechnical Society, 2017, 32 (1): 159- 167
[19]   鲍晓华, 狄冲, 汪朗 笼型感应电机转子斜槽研究综述及展望[J]. 电工技术学报, 2016, 31 (6): 1- 12
BAO Xiao-hua, DI Chong, WANG Lang Review and prospect of skewed rotor in squirrel cage induction machines[J]. Transactions of China Electrotechnical Society, 2016, 31 (6): 1- 12
doi: 10.3969/j.issn.1000-6753.2016.06.001
[20]   JUNG J W, KIM D J, HONG J P, et al Experimental verification and effects of step skewed rotor type IPMSM on vibration and noise[J]. IEEE Transactions on Magnetics, 2011, 47 (10): 3661- 3664
doi: 10.1109/TMAG.2011.2150739
[21]   YUSUF Y, MOHAMMED E, YILMAZ S, et al. Acoustic noise mitigation for high pole count switched reluctance machines through skewing method with multiphysics FEA simulations [C]// 2017 IEEE Energy Conversion Congress and Exposition. Cincinnati: IEEE, 2017: 738-744.
[22]   刘朋鹏, 张琪, 何彪, 等 永磁同步电机永磁体分块对涡流损耗的影响分析[J]. 电机控制与应用, 2018, 45 (6): 56- 61
LIU Peng-peng, ZHANG Qi, HE Biao, et al Impact analysis of permanent magnet segments on eddy current loss in permanent magnet synchronous motor[J]. Electric Machines and Control Application, 2018, 45 (6): 56- 61
[23]   HAN Z, LIU J, GONG C, et al. Influence mechanism on vibration and noise of PMSM for different structures of skewed stator [C]// 2017 20th International Conference on Electrical Machines and Systems. Sydney: IEEE, 2017: 1-5.
[24]   BLUM J, MERWERTH J, HERZOG H G. Investigation of the segment order in step-skewed synchronous machines on noise and vibration [C]// 2014 4th International Electric Drives Production Conference. Nuremberg: IEEE, 2014: 1-6.
[25]   陈世坤. 电机设计[M]. 北京: 机械工业出版社. 2004: 194-196.
[1] Yu WANG,Zhi-yong HAO,Kang ZHENG,Xu ZHENG,Yi QIU. Analysis of electromagnetic noise of permanent magnet synchronous motor based on multi-directional electromagnetic force[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2286-2293.
[2] Shuo-feng ZHAO,Xiao-yan HUANG,You-tong FANG. DC-link voltage fluctuation compensation for selected harmonics elimination under low switching frequency[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 388-398.
[3] LI Quan-feng, HUANG Su-rong, HUANG Hou-jia. Noise and torque characteristics of permanent magnet synchronous motor with unequal pole arc structure[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2210-2217.
[4] LI Guo-fei, TENG Qing-fang, WANG Chuan-lu, ZHANG Ya-qin. FCS-MPC strategy with sliding mode control for PMSM systems driven by four-switch inverters[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 620-627.
[5] PEI Xiao peng,WANG Guo lin,ZhOU Hai chao,ZhAO Fan. Influence of tread design parameters on tire vibration noise[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 871-878.
[6] ZUO Shu guang, LIN Fu, WU Xu dong. Analytical calculation model and ripple characteristics analysis of torque in permanent magnet synchronous motor for electric vehicles[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1731-1737.
[7] CHEN Liang liang,ZHU Chang sheng,JIANG Ke jian. Rotor strength analysis for high speed surface mounted permanent magnet synchronous motor with filled blocks between magnetic poles[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1738-1748.
[8] SUN Dan, CHEN Yin, LIN Bin.
Dead-beat direct torque control system of PMSM based on integrated observer
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1079-1086.
[9] SUN Dan, CHEN Yin, LIN Bin.
Dead-beat direct torque control system of PMSM based on integrated observer
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 1-2.
[10] XIAO Wen-sheng, CUI Jun-guo, LIU Jian, WU Xiao-dong, HUANG Hong-sheng. Optimization study for reducing cogging torque in permanent magnet synchronous motor used for direct-drive oil pumping[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 173-180.
[11] XIAO Wen-sheng, CUI Jun-guo, LIU Jian, WU Xiao-dong, HUANG Hong-sheng. ptimization study for reducing cogging torque in permanent magnet synchronous motor used for direct-drive oil pumping[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1-8.
[12] GAI Jiang-tao, HUANG Qing, HUANG Shou-dao, LIU Wang,ZHOU Tao-tao, PAN Xia. Active-disturbance rejection controller for permanent magnet synchronous motor based on model compensation[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 581-588.
[13] XUE Shao-shen, XU Hai-ping, FANG Cheng, NIU Wei-kun, XUE Shan. Multiphase permanent magnet synchronous motor harmonic plane control based on carrier technology[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2080-2086.
[14] SUN Xiao-dong, CHEN Long, YANG Ze-bin, ZHU Huang-qiu, JI Xiao-fu. Modeling of flux linkage for the BPMSM based on LS-SVM within the
Bayesian evidence framework
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(5): 873-877.