Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (7): 1245-1252    DOI: 10.3785/j.issn.1008-973X.2021.07.003
    
Lateral vibration behaviors of boom expansion of aerial work platform
Ai-min JI(),Hao WANG,Ming DENG,Lei ZHANG
College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China
Download: HTML     PDF(1580KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The telescopic boom was treated as a variable section and variable length beam with concentrated parameters, pined at the end and flexibly supported in the middle, in order to investigate the luffing transverse plane dynamic behaviors of aerial work platforms during telescopic motion. Firstly based on Newton’s second law of motion, the differential equations of each arm were established. And then transient mode functions at a series of time points were obtained by using mode superposition method and boundary condition. After that the time-varying parameters of the mode function were fitted to approximately represent the mode of the beam. The state space equations of generalized coordinates could be built in terms of Galerkin truncation method. At last, the luffing plane transverse vibration response dynamic response of boom’s tip was simulated by using Matlab/Simulink during telescopic movement. Results show that as far as the amplitude of lateral vibration is concerned, the simplification of the connection situation will bring the calculation result error of 15.63%, and the simplification of support situation will increase the stiffness of the boom and reduce the response of vibration of the boom, which is not desirable.



Key wordsaerial work platform      telescopic boom      Newton’s second law of movement      state space      vibration behaviors     
Received: 13 January 2020      Published: 05 July 2021
CLC:  TH 113  
Fund:  国家自然科学基金资助项目(51805144,51175146);常州市高空作业装备与智能技术重点实验室开放基金资助项目(CLAI201805);中央高校基本科研业务费资助项目(2018B732X14);江苏省研究生科研与实践创新计划资助项目 (KYCX18_0539)
Cite this article:

Ai-min JI,Hao WANG,Ming DENG,Lei ZHANG. Lateral vibration behaviors of boom expansion of aerial work platform. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1245-1252.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.07.003     OR     https://www.zjujournals.com/eng/Y2021/V55/I7/1245


高空作业平台臂架伸缩运动的横向振动特性

为了探究高空作业平台做伸缩运动时变幅平面内的横向振动动力学特性,针对臂架的实际搭接和支承情况,将臂架等效为根部铰接、中间弹性支承且带有集中参数的变截面变长度梁. 基于牛顿第二定律建立各臂段的运动微分方程,采用模态叠加法、结合边界条件求解臂架一系列时刻的瞬态振型函数,曲线拟合时变参数以近似表示梁的振型,并依据伽辽金截断方法,得到广义坐标下的状态空间方程. 在Matlab/Simulink环境下进行动态仿真,得到伸缩过程中臂架头部的变幅平面横向振动动态响应. 结果表明,就横向振动振幅而言,搭接简化会带来15.63%计算结果误差;支承简化会加大臂架整体刚度、减小臂架振动响应,不可取。


关键词: 高空作业平台,  伸缩臂架,  牛顿第二定律,  状态空间,  振动特性 
Fig.1 Schematic diagram of valve-control single acting hydraulic cylinder
Fig.2 Abstract model of boom structure
臂段编号 组合臂节 臂段编号 组合臂节
1 1 6 2、3
2 1、2 7 2、3、4
3 1、2、3 8 3
4 1、2、3、4 9 3、4
5 2 10 4
Tab.1 Arm segment and its section combination
臂号 Li/m ρai/(kg·m?1 EIi/(N·m2 mc/kg Jc/(kg·m2
1 9.43 79.50 1.14 $ \times $108 365.42 1736.62
2 10.82 66.12 6.50 $ \times $107 365.42 1736.62
3 10.81 55.05 3.88 $ \times $107 365.42 1736.62
4 11.07 44.13 2.10 $ \times $107 365.42 1736.62
Tab.2 Parameters of Booms
Fig.3 Initial assembly of boom
Fig.4 Final assembly of boom
Fig.5 Acceleration, speed, displacement curve of main telescopic cylinder
Fig.6 Variation of boom segments length
Fig.7 Fitting of frequency eigenvalue
Fig.8 Fitting curve of first-order mode shape function coefficient of arm section 10
Fig.9 Fitting curve of second-order mode shape function coefficient of arm section 10
Fig.10 Vibration response of boom's tip under two overlapping treatment
Fig.11 Vibration response of boom's tip under two supporting treatment
[1]   高凌翀, 滕儒民, 王欣 直臂高空作业平台臂架系统振动特性研究[J]. 振动与冲击, 2016, 35 (10): 225- 230
GAO Ling-chong, TENG Ru-min, WANG Xin Vibration behaviors of the boom system of a telescopic boom aerial work platform[J]. Journal of Vibration and Shock, 2016, 35 (10): 225- 230
[2]   PERTSCH A, ZIMMERT N, SAWODNY O. Modeling a fire-rescue turntable ladder as piecewise Euler-Bernoulli beam with a tip mass [C]// 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. Shanghai: [s.n.], 2009: 7321-7326.
[3]   PERTSCH, A, SAWODNY O Modelling and control of coupled bending and torsional vibrations of an articulated aerial ladder[J]. Mechatronics, 2016, 33: 34- 48
doi: 10.1016/j.mechatronics.2015.11.009
[4]   王豪, 纪爱敏, 张磊, 等 高空作业平台臂架变幅振动特性研究[J]. 振动与冲击, 2020, 39 (8): 40- 46
WANG Hao, JI Ai-min, ZHANG Lei, et al Research on amplitude-changing vibration characteristics of aerial work platform boom[J]. Journal of Vibration and Shock, 2020, 39 (8): 40- 46
[5]   黄日龙, 田常录, 谢家学 擦窗机伸缩臂的振动响应分析[J]. 江南大学学报: 自然科学版, 2014, 13 (2): 184- 188
HUANG Ri-long, TIAN Chang-lu, XIE Jia-xue Vibration response analysis of Gondola telescopic boom[J]. Journal of Jiangnan University: Natural Science Edition, 2014, 13 (2): 184- 188
[6]   杜文正, 张金星, 姚晓光, 等 特种起重机伸缩臂振动特性建模分析与试验[J]. 振动与冲击, 2016, 35 (22): 169- 175
DU Wen-zheng, ZHANG Jin-xing, YAO Xiao-guang, et al Mathematical vibration model and experiments of special telescopic crane boom[J]. Journal of Vibration and Shock, 2016, 35 (22): 169- 175
[7]   RAFTOYIANNIS I G, MICHALTSOS G T Dynamic behavior of a cantilevered cranes boom[J]. International Journal of Structural Stability and Dynamics, 2013, 13 (1): 1350010
doi: 10.1142/S0219455413500107
[8]   马国亮, 徐明龙, 陈立群, 等 末端质量作用下变长度轴向运动梁的振动特性[J]. 应用数学和力学, 2015, 36 (9): 897- 904
MA Guo-liang, XU Ming-long, CHEN Li-qun, et al Vibration characteristics of an axially moving variable length beam with a tip mass[J]. Applied Mathematics and Mechanics, 2015, 36 (9): 897- 904
[9]   王亮, 陈怀海, 贺旭东, 等 轴向运动变长度悬臂梁的振动控制[J]. 振动工程学报, 2009, 22 (6): 565- 570
WANG Liang, CHEN Huai-hai, HE Xu-dong, et al Vibration control of an axially moving cantilever beam with varying length[J]. Journal of Vibration Engineering, 2009, 22 (6): 565- 570
doi: 10.3969/j.issn.1004-4523.2009.06.002
[10]   王亮. 轴向运动梁动力学及控制研究[D]. 南京: 南京航空航天大学, 2012: 29-34.
WANG Liang. Study on the dynamics and control of axially moving beams [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 29-34.
[11]   ZHU W D, NI J, HUANG J Active control of translating media with arbitrarily varying length[J]. Journal of Vibration and Acoustics, 2001, 123 (1): 347- 358
[12]   ZHU W D, NI J Energetics and stability of translating media with an arbitrarily varying length[J]. Journal of Vibration and Acoustics, 2000, 122 (7): 247- 357
[13]   齐亚峰, 刘宁, 杨国来 轴向运动简支梁振动响应分析[J]. 兵器装备工程学报, 2016, 37 (12): 126- 129
QI Ya-feng, LIU Ning, YANG Guo-lai Vibration response analysis of a simply supported beam in axial motion[J]. Journal of Ordnance Equipment Engineering, 2016, 37 (12): 126- 129
doi: 10.11809/scbgxb2016.12.029
[14]   吉利科, 张伟, 叶敏, 等 液压弹簧及其在液压控制中的应用研究[J]. 液压气动与密封, 2018, 38 (8): 44- 47
JI Li-ke, ZHANG Wei, YE Min, et al Research on the hydraulic spring and its application for the hydraulic control system[J]. Hydraulics Pneumatics and Seals, 2018, 38 (8): 44- 47
doi: 10.3969/j.issn.1008-0813.2018.08.013
[1] Wei-ming HUANG,Jin-chang WANG,Ri-qing XU,Zhong-xuan YANG,Rong-qiao XU. Structural analysis of shield tunnel lining using theory of curved beam resting on elastic foundation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 787-795.
[2] Guang OUYANG,Tian-jun LI,Jiang-tao ZHANG,Jing-feng WANG,Rong-qiao XU. Tension analysis of hangers with stepped cross-section based on state space method[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 257-263.
[3] Xue-ying BAO,Yu-xi ZHENG,Qi-cai WANG. Construction group comprehensive bearing capacity analysis of deep cutting under green construction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 482-491.
[4] LIU Cheng-bin, LIU Wen-yao, CHEN Wei-qiu, WANG Hui-ming, LV Chao-feng. Generalized thermal shock analysis of piezoelectric spherical shell based on L-S theory[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1185-1193.
[5] YUAN Qing-wei, ZHAO Rong-xiang. Stator flux vector control scheme for IPMSM with improved transient-state and steady-state performance[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2420-2428.
[6] JIN Xin, LIANG Jun. Multivariable offset free model predictive control in dynamic PLS framework[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 750-758.
[7] ZHANG Jun-chao, YUE Mao-xiong, LIU Hua-feng. Dynamic PET image reconstruction with Geometrical structure
prior constraints
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 961-966.
[8] WANG Jian-Zhong, JIN Bei, LU Ren-Quan. Modeling and analysis of urban drainage system based on
leakage model
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1382-1386.