Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (11): 2102-2109    DOI: 10.3785/j.issn.1008-973X.2019.11.007
Mechanical Engineering     
Numerical simulation and experimental verification for selective laser single track melting forming of Ti6Al4V
Yu XIANG(),Shu-zhe ZHANG,Jun-feng LI,Zheng-ying WEI*(),Li-xiang YANG,Li-hao JIANG
State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Download: HTML     PDF(1629KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

For selective laser melting (SLM) forming of Ti6Al4V, a three-dimensional (3D) mesoscopic model of random distribution of powder particles was established based on the discrete element method (DEM). The volume of fluid method (VOF) was used to track the 3D dynamic free surface in SLM forming process. Various factors were considered in the numerical model, such as the TC4 powder bed with randomly distributed particles, the thermophysical parameters changing nonlinearly with temperature, the free surface evolution of the molten pool, the surface tension caused by temperature gradients, and the evaporation effect. The heat transfer, melting, flow and solidification in the interaction between laser and powder particles were studied according to the numerical simulation. Results show that the Marangoni convection induced by temperature gradient and surface tension gradient is the main factor affecting the heat and mass transfer within the melt pool and the 3D morphology of the melt pool. The line energy density (LED) is positively correlated with the Marangoni effect. The quality of single track surface was good when the optimized LED ranged from 92.9 J/m to 183.0 J/m. The three-dimensional size and the morphology of the molten pool and the molten track were observed and analyzed by the single track forming experiment, by which the numerical results were validated.



Key wordsselective laser melting      Ti6Al4V      single track      numerical simulation      line energy density     
Received: 08 June 2018      Published: 21 November 2019
CLC:  TN 249  
  TG 665  
  TG 146  
Corresponding Authors: Zheng-ying WEI     E-mail: b1ttergourd@stu.xjtu.edu.cn;zywei@mail.xjtu.edu.cn
Cite this article:

Yu XIANG,Shu-zhe ZHANG,Jun-feng LI,Zheng-ying WEI,Li-xiang YANG,Li-hao JIANG. Numerical simulation and experimental verification for selective laser single track melting forming of Ti6Al4V. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2102-2109.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.11.007     OR     http://www.zjujournals.com/eng/Y2019/V53/I11/2102


Ti6Al4V的激光选区熔化单道成形数值模拟与实验验证

对于Ti6Al4V材料的激光选区熔化(SLM)成形工艺,基于离散元方法(DEM)建立粉末颗粒随机分布的三维介观模型.采用流体体积法(VOF)对SLM成形过程的三维自由表面进行动态追踪;考虑TC4颗粒随机分布的粉床、随温度呈非线性变化的热物性参数、熔池自由液面演化、由温度梯度引起的表面张力以及蒸发作用;通过数值模拟研究激光与粉末颗粒相互作用过程中的传热、熔化、流动、凝固等过程. 结果表明,由温度梯度及表面张力梯度产生的马兰戈尼对流是影响熔池内部传热传质和熔池三维形貌的主要因素;线能量密度(LED)与马兰戈尼对流的强度呈正相关,当LED=92.9~183.0 J/m时,单道表面质量较优. 通过单道成形实验对熔池与熔道的三维尺寸与形貌进行观察分析,有效验证了数值模拟的正确性.


关键词: 激光选区熔化,  Ti6Al4V,  单道,  数值模拟,  线能量密度 
Fig.1 Model of randomly distributed Ti6Al4V powder bed
Fig.2 Thermophysical phenomena of melt pool interface in SLM
Fig.3 Thermophysical parameters of Ti6Al4V
参数 数值
Ti6Al4V 固相线Ts/K 1 877
Ti6Al4V液相线Tl/K 1 923
Tlv/K 3 313
Llv/(J·kg?1) 8.88×106
T0/K 293.15
P/W 220~380(间隔20 W)
扫描速度v/(mm·s?1) 1 200~3 800 (间隔200 mm/s)
激光光斑直径d/μm 70
α 0.68[19]
${\sigma _{\rm{s}}}$/(W·m?2·K?4) 5.67×10?8
hc/(W·m?2·K?1) 60
R/(J·mol?1·K?1) 8.314 472
εr 0.4
M/(kg·mol?1) 46.58
保护气氛 氩气
p0/Pa 1 500
Tab.1 Material parameters and processing conditions used in numerical simulation
Fig.4 Evolution of melt pool for melting and solidification
Fig.5 Evolution of temperature and velocity fields in melt track at four time snapshots
Fig.6 Influence of laser scanning speed on temperature distribution and surface of melt track at different laser energy values
Fig.7 Temperature distribution profiles and cooling rate versus iteration time at probe point
Fig.8 Surface tension of melt pool along laser scan direction
Fig.9 SEM morphology of Ti6Al4V powder
元素 wB/% 元素 wB/%
Ti 余量 C 0.07
Al 6.00 O 0.10
V 4.00 H 0.01
Fe 0.20 N 0.03
Tab.2 Chemical composition of Ti6Al4V powder
Fig.10 Typical surface morphologies of Ti6Al4V single tracks
Fig.11 Experimental and numerical results of morphology of melt pool
Fig.12 Processing window for Ti6Al4V single track melting formation
[1]   WU S, LU Y, HUANG T, et al Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments[J]. Journal of Alloys and Compounds, 2016, 672 (5): 643- 652
[2]   ZHAO Z, CHEN J, ZHAO X, et al Microstructure and mechanical properties of laser repaired TC4 titanium alloy[J]. Rare Metal Materials and Engineering, 2017, 46 (7): 1792- 1797
doi: 10.1016/S1875-5372(17)30168-6
[3]   LI H, HUANG B, SUN F, et al Microstructure and tensile properties of Ti-6Al-4V alloys fabricated by selective laser melting[J]. Rare Metal Materials and Engineering, 2013, 42: 209- 212
[4]   李富长, 宋祖铭, 杨典军 钛合金加工工艺技术研究[J]. 新技术新工艺, 2010, (5): 66- 69
LI Fu-chang, SONG Zu-ming, YANG Dian-jun Research on titanium alloy machining technology[J]. New Technology and New Process, 2010, (5): 66- 69
doi: 10.3969/j.issn.1003-5311.2010.05.022
[5]   巩水利, 锁红波, 李怀学 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术, 2013, 433 (13): 66- 71
GONG Shui-li, SUO Hong-bo, LI Huai-xue Development and application of metal additive manufacturing technology[J]. Aeronautical Manufacturing Technology, 2013, 433 (13): 66- 71
doi: 10.3969/j.issn.1671-833X.2013.13.012
[6]   王华明 高能金属构件增材制造技术开启国防制造新篇章[J]. 国防制造技术, 2013, 3: 5- 7
WANG Hua-ming High-performance metal component manufacturing technology opens a new chapter in national defense[J]. Defense Manufacturing Technology, 2013, 3: 5- 7
[7]   卢秉恒, 李涤尘 增才制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42 (4): 1- 4
LU Bing-heng, LI Di-chen Development of the additive manufacturing (3D printing) technology[J]. Machinery Manufacturing and Automation, 2013, 42 (4): 1- 4
doi: 10.3969/j.issn.1671-5276.2013.04.001
[8]   李俊峰, 魏正英, 卢秉恒 钛及钛合金激光选区熔化技术的研究进展[J]. 激光与光电子学进展, 2018, 55 (1): 011403
LI Jun-feng, WEI Zheng-ying, LU Bing-heng Research progress on technology of selective laser melting of titanium and titanium alloys[J]. Laser and Optoelectronics Progress, 2018, 55 (1): 011403
[9]   K?RNER C, ATTAR E, HEINAL P Mesoscopic simulation of selective beam melting processes[J]. Journal of Materials Processing Technology, 2011, 211 (6): 978- 987
doi: 10.1016/j.jmatprotec.2010.12.016
[10]   CHIUMENTI M, NEIVA E, SALSI E, et al Numerical modelling and experimental validation in selective laser melting[J]. Additive Manufacturing, 2017, 18: 171- 185
doi: 10.1016/j.addma.2017.09.002
[11]   YAN W, GE W, QIAN Y, et al Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting[J]. Acta Materialia, 2017, 134: 324- 333
doi: 10.1016/j.actamat.2017.05.061
[12]   CHEN Z, XIANG Y, WEI Z, et al Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification[J]. Applied Physics A, 2018, 124 (4): 313
doi: 10.1007/s00339-018-1737-8
[13]   VOLLER V R, PRAKASH C A fixed grid numerical modeling methodology for convection diffusion mushy region phase change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30 (8): 1709- 1719
doi: 10.1016/0017-9310(87)90317-6
[14]   WEI P, WEI Z, CHEN Z, et al The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior [J]. Applied Surface Science, 2017, 408 (30): 38- 50
[15]   HIRT C W, NICHOLS B D Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39 (1): 201- 225
doi: 10.1016/0021-9991(81)90145-5
[16]   DAI D, GU D Influence of thermodynamics within melt pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites [J]. International Journal of Machine Tools Manufacturing, 2016, 100: 14- 24
doi: 10.1016/j.ijmachtools.2015.10.004
[17]   SEMAK V, MATSUNAWA A The role of recoil pressure in energy balance during laser materials processing[J]. Journal of Physics D: Applied Physics, 1999, 30 (18): 2541
[18]   KLASSEN A, SCHAROWSKY T, K?RNER C Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods[J]. Journal of Physics D: Applied Physics, 2014, 47 (27): 275303
doi: 10.1088/0022-3727/47/27/275303
[19]   RUBENCHIK A, WU S, MITCHELL S, et al Direct measurements of temperature-dependent laser absorptivity of metal powders[J]. Applied Optics, 2015, 54 (24): 7230- 7233
doi: 10.1364/AO.54.007230
[20]   GU D, MEINERS W, WISSENBACH K, et al Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Review, 2012, 57 (3): 133- 164
doi: 10.1179/1743280411Y.0000000014
[1] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[2] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[3] Chao-feng ZENG,Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 338-347.
[4] Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.
[5] Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.
[6] Ya-bo YU,Ya-dong DENG. Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 381-388.
[7] Zhong YUN,Meng WEN,Zi-rong LUO,Long CHEN. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 407-415.
[8] Si-yuan XU,Jun DU,Guang-xi ZHAO,Zheng-ying WEI. Droplet transfer behavior in fused-deposition of 45 steel/tin lead alloy bimetallic structures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2224-2232.
[9] Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.
[10] Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.
[11] Zhong YUN,Meng WEN,Yi JIANG,Long CHEN,Long-fei FENG. Design and hydrodynamic analysis of pectoral fin oscillation propulsion mechanism of bionic manta ray[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 872-879.
[12] Wen-liang QIU,Ha-si HU,Tian TIAN,Zhe ZHANG. Structural parameters affecting seismic behavior of concrete-filled steel tube composite piers[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 889-898.
[13] Xian-tai JI,Shi-feng WEN,Qing-song WEI,Yan ZHOU,Zhi-ping CHEN. Effect of quenching treatment on performance of S136 steel fabricated via selective laser melting[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 664-670.
[14] Yu-qi HUANG,Pan MEI,Xiao-ji CHEN,Chang-shui DENG. Heating strategy for electric vehicular battery pack based on CFD analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 207-213.
[15] Jin XIA,Shi-jie JIN,Xiao-yu HE,Xiao-mei XU,Wei-liang JIN. Effect of electric potential condition on numerical simulation of electrochemical rehabilitation for concrete structures[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2298-2308.