Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (3): 643-650    DOI: 10.3785/j.issn.1008-973X.2026.03.020
计算机技术、控制工程     
基于行为树的单舵轮AGV路径规划
林桂娟1,2(),李子涵1,2,陈潇晨1,2,王宇1,2
1. 厦门理工学院 机械与汽车工程学院,福建 厦门 361024
2. 厦门理工学院 精密驱动与传动福建省高等学校重点实验室,福建 厦门 361024
Single-steering-driven AGV path planning based on behavior tree
Guijuan LIN1,2(),Zihan LI1,2,Xiaochen CHEN1,2,Yu WANG1,2
1. School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
2. Fujian Provincial Key Laboratory of Precision Drive and Transmission, Xiamen University of Technology, Xiamen 361024, China
 全文: PDF(2866 KB)   HTML
摘要:

针对传统算法不适用于单舵轮自动导引运输车(AGV)的问题以及仓储物流作业的高秩序性需求,提出基于Nav2行为树的整体导航系统. 构建整体运行有向图,提出基于站点与航向约束的改进Dijkstra全局路径规划算法. 基于多目标组合优化的梯度引导改进DWA算法,采用分离轴与三邻域扩展方式改进A*规划避障路径,二者共同工作进行局部路径规划. 基于Nav2的行为树,构建避障策略. 仿真显示,与传统算法相比,采用改进Dijkstra算法的节点遍历数最高降低81.6%,寻路时间最高降低42.1%. 与传统DWA相比,改进DWA在无障碍物路径跟随中,误差均方根最高可以降低73.78%,控制精度小于50 mm. 实车验证可知,与传统DWA相比,采用改进DWA算法的跟踪误差最高降低50.26%,应对动静障碍物时均能准确地判断,具有较高的灵活性和精确性.

关键词: 单舵轮自动导引运输车Nav2仓储物流路径规划行为树    
Abstract:

A navigation system based on the Nav2 behavior tree was proposed to address the inapplicability of traditional algorithm for single-steering-wheel automated guided vehicle (AGV) and the high-orderliness requirement of warehouse logistics operation. An overall operational directed graph was constructed, and an improved global path planning algorithm based on site and heading constraints was developed using a modified Dijkstra approach. A gradient-guided dynamic window approach (DWA) enhanced through multi-objective optimization was introduced, while an improved A* algorithm with a separated-axis and tri-neighborhood expansion strategy was employed to plan obstacle avoidance paths. These two methods operated cooperatively to achieve local path planning, and an obstacle avoidance strategy was constructed within the Nav2 behavior tree framework. The simulation results showed that the proposed Dijkstra algorithm reduced the number of traversed nodes by up to 81.6% and the pathfinding time by up to 42.1% compared with traditional algorithms. The improved DWA achieved a maximum reduction of 73.78% in the root mean square error (RMSE) during obstacle-free path following compared with the traditional DWA, maintaining control accuracy within 50 mm. Real-vehicle experiments demonstrated that the improved DWA algorithm reduced the tracking error by up to 50.26% compared with the traditional DWA. The improved DWA algorithm can accurately identify and respond to both static and dynamic obstacles, exhibiting high flexibility and precision.

Key words: single-steering-wheel automated guided vehicle    Nav2    warehouse logistics    path planning    behavior tree
收稿日期: 2025-03-01 出版日期: 2026-02-04
:  TP 391  
基金资助: 福建省自然科学基金资助项目(2025J011285).
作者简介: 林桂娟(1978—),女,教授,从事智能制造及机电工程的研究. orcid.org/0009-0002-6551-7222. E-mail:linguijuan@xmut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
林桂娟
李子涵
陈潇晨
王宇

引用本文:

林桂娟,李子涵,陈潇晨,王宇. 基于行为树的单舵轮AGV路径规划[J]. 浙江大学学报(工学版), 2026, 60(3): 643-650.

Guijuan LIN,Zihan LI,Xiaochen CHEN,Yu WANG. Single-steering-driven AGV path planning based on behavior tree. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 643-650.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.020        https://www.zjujournals.com/eng/CN/Y2026/V60/I3/643

图 1  单舵轮AGV入库位的流程
图 2  改进Dijkstra算法的流程
图 3  改进DWA算法的流程
图 4  改进A*邻域扩展方式
图 5  局部可达点的搜索方法
图 6  避障路径规划算法的流程
图 7  避障策略的流程
图 8  行为树导航系统的架构
图 9  行为树Navigator节点
图 10  停车点到取货点的仿真对比
任务信息传统Dijkstra改进Dijkstra优化效率
NL/mT/sNL/mT/s?N/%?T/%
停车点→取货点17463.530.3111159.530.2636.216.1
取货点→放货点17469.170.3116268.600.306.93.2
放货点→充电点17480.620.3516680.050.284.620.0
充电点→停车点17432.130.383232.130.2281.642.1
表 1  全局路径规划的仿真对比数据
图 11  “停车点到取货点” 路径跟随
图 12  “取货点到放货点” 路径跟随
图 13  避障仿真的实验结果
图 14  实车路径跟随误差结果
图 15  动态障碍物避障运行路径图
图 16  静态障碍物避障运行路径图
1 YIN X, CAI P, ZHAO K, et al Dynamic path planning of AGV based on kinematical constraint A* algorithm and following DWA fusion algorithms[J]. Sensors, 2023, 23 (8): 4102
doi: 10.3390/s23084102
2 孙孝飞, 郭捷, 魏灿名, 等 3C智能制造工厂的AGV智慧物料传输与调度综述[J]. 中南大学学报: 自然科学版, 2025, 56 (2): 514- 535
SUN Xiaofei, GUO Jie, WEI Canming, et al Review of AGV smart material transmission and dispatching in 3C smart manufacturing factories[J]. Journal of Central South University: Science and Technology, 2025, 56 (2): 514- 535
3 文生平, 苏毅龙, 瞿弘毅 Mecanum轮全向AGV轨迹跟踪级联控制器设计[J]. 华南理工大学学报: 自然科学版, 2025, 53 (1): 49- 61
WEN Shengping, SU Yilong, QU Hongyi Design of a cascade controller of trajectory tracking for omnidirectional AGV driven by Mecanum wheels[J]. Journal of South China University of Technology: Natural Science Edition, 2025, 53 (1): 49- 61
4 龚辉, 方强, 李国强, 等 基于模型参考自适应的AGV运动控制系统设计[J]. 浙江大学学报: 工学版, 2022, 56 (9): 1867- 1875
GONG Hui, FANG Qiang, LI Guoqiang, et al Design of AGV motion control system based on model reference adaptive method[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (9): 1867- 1875
5 董玉龙, 陈璐, 鲍中凯 基于博弈论的飞机总装物流配送系统资源配置[J]. 浙江大学学报: 工学版, 2025, 59 (1): 120- 129
DONG Yulong, CHEN Lu, BAO Zhongkai Resource allocation of aircraft final assembly logistics distribution system based on game theory[J]. Journal of Zhejiang University: Engineering Science, 2025, 59 (1): 120- 129
6 姚日煌, 陈新苹, 鹿洵 企业智能制造系统现状研究[J]. 电子质量, 2023, (4): 99- 103
YAO Rihuang, CHEN Xinping, LU Xun Research on the present situation of enterprise intelligent manufacturing system[J]. Electronics Quality, 2023, (4): 99- 103
7 刘志成, 王华龙, 郭威, 等 单舵轮AGV叉车的高精度导航算法研究与应用[J]. 计算机测量与控制, 2024, 32 (9): 307- 314
LIU Zhicheng, WANG Hualong, GUO Wei, et al Research and application of high precision navigation algorithm for single steering wheel AGV forklift[J]. Computer Measurement and Control, 2024, 32 (9): 307- 314
8 万中娇 基于用户需求的叉车造型设计研究[J]. 工业设计, 2021, (2): 155- 156
WAN Zhongjiao Research on forklift modeling design based on user demand[J]. Industrial Design, 2021, (2): 155- 156
9 赵钢, 曹男, 曹轶伦 基于深度学习的智能叉车障碍物识别与定位算法[J]. 起重运输机械, 2025, (6): 34- 40
ZHAO Gang, CAO Nan, CAO Yilun Intelligent obstacle identiflcation and location algorithm of forklift based on deep learning[J]. Hoisting and Conveying Machinery, 2025, (6): 34- 40
10 WU B, CHI X, ZHAO C, et al Dynamic path planning for forklift AGV based on smoothing A* and improved DWA hybrid algorithm[J]. Sensors, 2022, 22 (18): 7079
doi: 10.3390/s22187079
11 王倩, 杨立炜, 李俊丽, 等 蚁群融合动态窗口法的分布式多机器人运动规划研究[J]. 重庆邮电大学学报: 自然科学版, 2024, 36 (1): 20- 28
WANG Qian, YANG Liwei, LI Junli, et al Research on distributed multi-robot motion planning based on ant colony algorithm fusion dynamic window approach[J]. Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition, 2024, 36 (1): 20- 28
12 郭建, 曾志豪, 黄熙航, 等 融合改进Dijkstra算法和MPC的单舵轮机器人路径规划[J]. 组合机床与自动化加工技术, 2024, (6): 18- 23
GUO Jian, ZENG Zhihao, HUANG Xihang, et al Path planning of single-wheeled robot based on improved Dijkstra algorithm and model prediction[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2024, (6): 18- 23
13 刘宇庭, 郭世杰, 唐术锋, 等 改进A*与ROA-DWA融合的机器人路径规划[J]. 浙江大学学报: 工学版, 2024, 58 (2): 360- 369
LIU Yuting, GUO Shijie, TANG Shufeng, et al Path planning based on fusion of improved A* and ROA-DWA for robot[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (2): 360- 369
14 段震, 袁源, 李原, 等 融合IGJO与TEB算法的移动机器人路径规划[J]. 传感器与微系统, 2025, 44 (4): 132- 136
DUAN Zhen, YUAN Yuan, LI Yuan, et al Path planning for mobile robot integrating IGJO and TEB algorithms[J]. Transducer and Microsystem Technologies, 2025, 44 (4): 132- 136
15 SOLTANI A R, TAWFIK H, GOULERMAS J Y, et al. Path planning in construction sites: performance evaluation of the Dijkstra, A, and GA search algorithms [J]. Advanced Engineering Informatics, 2002, 16(4): 291–303.
16 LIN Z, YUE M, CHEN G, et al Path planning of mobile robot with PSO-based APF and fuzzy-based DWA subject to moving obstacles[J]. Transactions of the Institute of Measurement and Control, 2022, 44 (1): 121- 132
doi: 10.1177/01423312211024798
17 黄勇强, 刘砚菊, 宋建辉, 等 基于改进A*算法与优化DWA的差速移动机器人路径规划[J]. 沈阳理工大学学报, 2023, 42 (6): 25- 33
HUANG Yongqiang, LIU Yanju, SONG Jianhui, et al Path planning of differential mobile robot based on improved A* and DWA algorithm[J]. Journal of ShenYang Ligong University, 2023, 42 (6): 25- 33
18 张威, 葛泉波, 刘华平, 等 室外未知环境下的AGV地貌主动探索感知[J]. 智能系统学报, 2021, 16 (1): 152- 161
ZHANG Wei, GE Quanbo, LIU Huaping, et al AGV active landform exploration and perception in an unknown outdoor environment[J]. CAAI Transactions on Intelligent Systems, 2021, 16 (1): 152- 161
19 郑继强, 汪伟, 王汝佳 基于改进动态窗口法的AGV路径规划[J]. 计算机仿真, 2025, 42 (1): 167- 171
ZHENG Jiqiang, WANG Wei, WANG Rujia AGV path planning based on improved dynamic window method[J]. Computer Simulation, 2025, 42 (1): 167- 171
20 吴寿英, 李炜 基于分离轴算法的机场场面飞行器冲突告警研究[J]. 计算机应用与软件, 2023, 40 (3): 72- 76
WU Shouying, LI Wei Research on aircraft collision warning at airport scene based on separation axis algorithm[J]. Computer Applications and Software, 2023, 40 (3): 72- 76
21 MACENSKI S, MARTÍN F, WHITE R, et al. The marathon 2: a navigation system [C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2021: 2718–2725.
22 宣捷, 王璐, 彭颖 基于ROS2.0四足抓取机器人的设计[J]. 洛阳理工学院学报: 自然科学版, 2023, 33 (3): 52- 58
XUAN Jie, WANG Lu, PENG Ying Design of quadruped grasping robot based on ROS2.0[J]. Journal of Luoyang Institute of Science and Technology: Natural Science Edition, 2023, 33 (3): 52- 58
23 KOKOTINIS G, MICHALOS G, ARKOULI Z, et al Α behavior trees-based architecture towards operation planning in hybrid manufacturing[J]. International Journal of Computer Integrated Manufacturing, 2024, 37 (3): 324- 349
doi: 10.1080/0951192X.2023.2228254
24 杨检栋, 曲乃铸, 吕忠阳 基于改进GA算法的AGV运输车路径优化及自动物流仓储系统闭环管控研究[J]. 自动化与仪器仪表, 2024, (3): 193- 196
YANG Jiandong, QU Naizhu, LV Zhongyang Research on AGV transporter path optimization and closed-loop control of automatic logistics and warehousing system based on improved GA algorithm[J]. Automation and Instrumentation, 2024, (3): 193- 196
25 黄荣杰, 王亚刚 基于可视图与改进遗传算法的机器人平滑路径规划[J]. 控制工程, 2024, 31 (4): 678- 686
HUANG Rongjie, WANG Yagang Smooth path planning for robot based on visibility graph and improved genetic algorithm[J]. Control Engineering of China, 2024, 31 (4): 678- 686
[1] 张静,王祎,陈子龙,李云松. 多目标多智能体路径规划方法[J]. 浙江大学学报(工学版), 2025, 59(8): 1689-1697.
[2] 熊慧,葛邦鲁,刘近贞,王家兴. 用于多无人机协同路径规划的改进黏菌蜂群算法[J]. 浙江大学学报(工学版), 2025, 59(8): 1698-1707.
[3] 叶俊,肖志斌,林晓阳,全冠,王震,王跃达,何江飞,赵阳. 基于多轴3D打印的三维自支撑桁架结构优化方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1333-1343.
[4] 郝琨,孟璇,赵晓芳,李志圣. 融合自适应势场法和深度强化学习的三维水下AUV路径规划方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1451-1461.
[5] 廖榆信,王伟,滕卫明,贺海晏,王战,王进. 基于多目标约束的无人机光顺路径生成全局优化方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1481-1491.
[6] 赵威,张万枝,侯加林,侯瑞,李玉华,赵乐俊,程进. 基于改进深度强化学习算法的农业机器人路径规划[J]. 浙江大学学报(工学版), 2025, 59(7): 1492-1503.
[7] 于少猛,闫铭,王鹏飞,朱建锡,杨欣. 丘陵山地果园植保无人机三维路径规划[J]. 浙江大学学报(工学版), 2025, 59(3): 635-642.
[8] 潘嘉威,王淳立,郑秀娟,涂海燕. 基于语义分割的启发式采样路径规划算法[J]. 浙江大学学报(工学版), 2025, 59(10): 2154-2163.
[9] 刘宇庭,郭世杰,唐术锋,张学炜,李田田. 改进A*与ROA-DWA融合的机器人路径规划[J]. 浙江大学学报(工学版), 2024, 58(2): 360-369.
[10] 陈丽芳,杨火根,陈智超,杨杰. B样条技术与遗传算法融合的全局路径规划[J]. 浙江大学学报(工学版), 2024, 58(12): 2520-2530.
[11] 靳佳澳,沈洪垚,孙扬帆,林嘉浩,陈静霓. 面向电弧增材的单线激光扫描路径规划[J]. 浙江大学学报(工学版), 2023, 57(1): 21-31.
[12] 徐维祥,康楠,徐婷. 基于出行计划数据的最优路径规划方法[J]. 浙江大学学报(工学版), 2022, 56(8): 1542-1552.
[13] 戴天伦,李博涵,臧亚磊,戴华,于自强,陈钢. PORP:面向无人驾驶的路径规划并行优化策略[J]. 浙江大学学报(工学版), 2022, 56(2): 329-337.
[14] 吴敬理,伊国栋,裘乐淼,张树有. 高温混合障碍空间中的移动机器人路径规划[J]. 浙江大学学报(工学版), 2021, 55(10): 1806-1814.
[15] 刘洁,董献洲,韩维,王昕炜,刘纯,贾珺. 采用牛顿迭代保辛伪谱算法的舰载机甲板路径规划[J]. 浙江大学学报(工学版), 2020, 54(9): 1827-1838.