| 计算机技术、控制工程 |
|
|
|
|
| 面向光伏电站建设的移动端人体跌倒检测方法 |
李彬彬1( ),张超2,覃涛1,陈昌盛1,刘兴艳3,杨靖1,4,*( ) |
1. 贵州大学 电气工程学院,贵州 贵阳 550025 2. 中国电建集团贵州工程有限公司,贵州 贵阳 550025 3. 贵州电网有限责任公司电网规划研究中心,贵州 贵阳 550025 4. 贵州省互联网+协同智能制造重点实验室,贵州 贵阳 550025 |
|
| Mobile-based human fall detection method for photovoltaic power plant construction |
Binbin LI1( ),Chao ZHANG2,Tao QIN1,Changsheng CHEN1,Xingyan LIU3,Jing YANG1,4,*( ) |
1. Electrical Engineering College, Guizhou University, Guiyang 550025, China 2. China Power Construction Group Guizhou Engineering Limited Company, Guiyang 550025, China 3. Power Grid Planning and Research Center of Guizhou Power Grid Limited Company, Guiyang 550025, China 4. Guizhou Provincial Key Laboratory of Internet+Intelligent Manufacturing, Guiyang 550025, China |
引用本文:
李彬彬,张超,覃涛,陈昌盛,刘兴艳,杨靖. 面向光伏电站建设的移动端人体跌倒检测方法[J]. 浙江大学学报(工学版), 2026, 60(3): 546-555.
Binbin LI,Chao ZHANG,Tao QIN,Changsheng CHEN,Xingyan LIU,Jing YANG. Mobile-based human fall detection method for photovoltaic power plant construction. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 546-555.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.010
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I3/546
|
| 1 |
CHOI S D, GUO L, KIM J, et al Comparison of fatal occupational injuries in construction industry in the United States, South Korea, and China[J]. International Journal of Industrial Ergonomics, 2019, 71: 64- 74
doi: 10.1016/j.ergon.2019.02.011
|
| 2 |
HU K, RAHMANDAD H, SMITH-JACKSON T, et al Factors influencing the risk of falls in the construction industry: a review of the evidence[J]. Construction Management and Economics, 2011, 29 (4): 397- 416
doi: 10.1080/01446193.2011.558104
|
| 3 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580–587.
|
| 4 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
| 5 |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980–2988.
|
| 6 |
CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6154–6162.
|
| 7 |
DELGADO-ESCAÑO R, CASTRO F M, CÓZAR J R, et al A cross-dataset deep learning-based classifier for people fall detection and identification[J]. Computer Methods and Programs in Biomedicine, 2020, 184: 105265
doi: 10.1016/j.cmpb.2019.105265
|
| 8 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779–788.
|
| 9 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517–6525.
|
| 10 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. [2025-05-07]. https://arxiv.org/abs/1804.02767.
|
| 11 |
BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. [2025-05-21]. https://arxiv.org/abs/2004.10934.
|
| 12 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]//European Conference on Computer Vision. Cham: Springer, 2016: 21–37.
|
| 13 |
HAN S, LIU X, MAO H, et al. EIE: efficient inference engine on compressed deep neural network [C]//Proceedings of the ACM/IEEE 43rd Annual International Symposium on Computer Architecture. Seoul: IEEE, 2016: 243–254.
|
| 14 |
赵俊杰, 周晓静, 李佳欣 改进YOLOV7的跌倒人员检测[J]. 计算机科学, 2024, 51 (Suppl.1): 613- 618 ZHAO Junjie, ZHOU Xiaojing, LI Jiaxin Improving the detection of fallen persons in YOLOV7[J]. Computer Science, 2024, 51 (Suppl.1): 613- 618
doi: 10.11896/jsjkx.230800039
|
| 15 |
朱胜豪, 钱承山, 阚希 改进YOLOv5的高精度跌倒检测算法[J]. 计算机工程与应用, 2024, 60 (11): 105- 114 ZHU Shenghao, QIAN Chengshan, KAN Xi High-precision fall detection algorithm with improved YOLOv5[J]. Computer Engineering and Applications, 2024, 60 (11): 105- 114
doi: 10.3778/j.issn.1002-8331.2307-0190
|
| 16 |
ZHAO D, SONG T, GAO J, et al YOLO-fall: a novel convolutional neural network model for fall detection in open spaces[J]. IEEE Access, 2024, 12: 26137- 26149
doi: 10.1109/ACCESS.2024.3362958
|
| 17 |
WANG H, XU S, CHEN Y, et al LFD-YOLO: a lightweight fall detection network with enhanced feature extraction and fusion[J]. Scientific Reports, 2025, 15: 5069
doi: 10.1038/s41598-025-89214-7
|
| 18 |
HUANG X, LI X, YUAN L, et al SDES-YOLO: a high-precision and lightweight model for fall detection in complex environments[J]. Scientific Reports, 2025, 15: 2026
doi: 10.1038/s41598-025-86593-9
|
| 19 |
ZHANG X, BAI J, QIAO G, et al YOLO-fall: a YOLO-based fall detection model with high precision, shrunk size, and low latency[J]. The Computer Journal, 2025, 68 (7): 804- 812
doi: 10.1093/comjnl/bxaf005
|
| 20 |
PRIADANA A, NGUYEN D L, VO X T, et al HFD-YOLO: improved YOLO network using efficient attention modules for real-time one-stage human fall detection[J]. IEEE Access, 2025, 13: 41248- 41258
doi: 10.1109/ACCESS.2025.3547360
|
| 21 |
ZHONG J, CHEN J, MIAN A DualConv: dual convolutional kernels for lightweight deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34 (11): 9528- 9535
doi: 10.1109/TNNLS.2022.3151138
|
| 22 |
JIAO J, TANG Y M, LIN K Y, et al DilateFormer: multi-scale dilated transformer for visual recognition[J]. IEEE Transactions on Multimedia, 2023, 25: 8906- 8919
doi: 10.1109/TMM.2023.3243616
|
| 23 |
ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 16965–16974.
|
| 24 |
CHENG G, SI Y, HONG H, et al Cross-scale feature fusion for object detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (3): 431- 435
doi: 10.1109/LGRS.2020.2975541
|
| 25 |
孙寿松, 李新凯, 张宏立, 等 嵌入式平台的番茄叶片病虫害检测模型[J]. 计算机工程与应用, 2025, 61 (16): 305- 314 SUN Shousong, LI Xinkai, ZHANG Hongli, et al Embedded platform for tomato leaf pest detection model[J]. Computer Engineering and Applications, 2025, 61 (16): 305- 314
doi: 10.3778/j.issn.1002-8331.2411-0193
|
| 26 |
宋芝文, 李伟, 谭伟, 等 基于YOLO V4-TLite的移动端君子兰病虫害检测方法[J]. 农业工程学报, 2025, 41 (5): 175- 181 SONG Zhiwen, LI Wei, TAN Wei, et al Detection method for Clivia miniata pests and diseases on mobile terminal based on YOLO V4-TLite[J]. Transactions of the Chinese Society of Agricultural Engineering, 2025, 41 (5): 175- 181
doi: 10.11975/j.issn.1002-6819.202409169
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|