Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (3): 546-555    DOI: 10.3785/j.issn.1008-973X.2026.03.010
计算机技术、控制工程     
面向光伏电站建设的移动端人体跌倒检测方法
李彬彬1(),张超2,覃涛1,陈昌盛1,刘兴艳3,杨靖1,4,*()
1. 贵州大学 电气工程学院,贵州 贵阳 550025
2. 中国电建集团贵州工程有限公司,贵州 贵阳 550025
3. 贵州电网有限责任公司电网规划研究中心,贵州 贵阳 550025
4. 贵州省互联网+协同智能制造重点实验室,贵州 贵阳 550025
Mobile-based human fall detection method for photovoltaic power plant construction
Binbin LI1(),Chao ZHANG2,Tao QIN1,Changsheng CHEN1,Xingyan LIU3,Jing YANG1,4,*()
1. Electrical Engineering College, Guizhou University, Guiyang 550025, China
2. China Power Construction Group Guizhou Engineering Limited Company, Guiyang 550025, China
3. Power Grid Planning and Research Center of Guizhou Power Grid Limited Company, Guiyang 550025, China
4. Guizhou Provincial Key Laboratory of Internet+Intelligent Manufacturing, Guiyang 550025, China
 全文: PDF(7437 KB)   HTML
摘要:

针对光伏电站建设中背景复杂、人体跌倒检测困难及现场部署受限的问题,提出基于移动端的CMD-YOLO检测方法. 该方法以YOLOv8为基线,使用改进的双分支卷积融合模块(C2f-Dualconv)替换传统C2f模块,以提高特征提取和计算效率. 采用轻量化跨尺度特征融合模块(CCFM)替换原颈部网络,在主干与颈部间引入多尺度空洞注意力机制(MSDA). 实验部署在Orange Pi5 Pro RK3588平台上,结果显示平均精度达到88.6%,参数量和运算量分别降低了31.3%和22.2%,单张检测时间为0.029 7 s,平均功耗为2.264 7 W. CMD-YOLO以低参数量、低功耗和高实时性的优势,有效应对光伏电站跌倒检测中的关键挑战,并能在资源受限的现场稳定运行,为移动端的实时检测提供可靠的支持.

关键词: 人体跌倒检测YOLOv8轻量化低功耗注意力机制移动端部署    
Abstract:

A mobile-based CMD-YOLO detection method was proposed in order to address the challenges of complex background, difficulty in detecting human fall, and limited on-site deployment in photovoltaic power plant construction. YOLOv8 was used as the baseline and the traditional C2f module was replaced with an improved dual-branch convolution fusion module (C2f-Dualconv) in order to enhance feature extraction and computational efficiency. The original neck network was replaced with a lightweight cross-scale feature fusion module (CCFM), introducing a multi-scale dilated Transformer attention (MSDA) between the backbone and the neck. The experiment was deployed on the Orange Pi5 Pro RK3588 platform. Results showed an average accuracy of 88.6%, with parameter count and computational load reduced by 31.3% and 22.2% respectively. Single-image detection time was 0.0297 s, and average power consumption was 2.2647 W. CMD-YOLO effectively addresses key challenges in fall detection at photovoltaic power plant through its advantage of low parameter count, low power consumption and high real-time performance. CMD-YOLO operates stably in resource-constrained field environment, providing reliable support for real-time detection on mobile device.

Key words: human fall detection    YOLOv8    lightweight    low power consumption    attention mechanism    mobile deployment
收稿日期: 2025-07-10 出版日期: 2026-02-04
:  TP 391  
基金资助: 国家自然科学基金资助项目(61640014,52267003);贵州省科技支撑计划资助项目(黔科合支撑[2023]一般411,黔科合支撑[2024]一般051,黔科合支撑[2025]一般008);贵州省基础研究计划资助项目(黔科合基础MS[2025]596);贵州省科技成果转化项目(黔科合成果-LH[2024]重大028,黔科合成果LH[2025]重点009);贵州省教育厅工程研究中心资助项目(黔教技[2022]040);中国电建集团科技资助项目(DJ-ZDXM-2022-44).
通讯作者: 杨靖     E-mail: gs.libb24@gzu.edu.cn;jyang7@gzu.edu.cn
作者简介: 李彬彬(2001—),男,硕士生,从事目标检测、嵌入式系统研究. orcid.org/0009-0004-7143-1913. E-mail:gs.libb24@gzu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李彬彬
张超
覃涛
陈昌盛
刘兴艳
杨靖

引用本文:

李彬彬,张超,覃涛,陈昌盛,刘兴艳,杨靖. 面向光伏电站建设的移动端人体跌倒检测方法[J]. 浙江大学学报(工学版), 2026, 60(3): 546-555.

Binbin LI,Chao ZHANG,Tao QIN,Changsheng CHEN,Xingyan LIU,Jing YANG. Mobile-based human fall detection method for photovoltaic power plant construction. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 546-555.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.010        https://www.zjujournals.com/eng/CN/Y2026/V60/I3/546

图 1  CMD-YOLO模型的结构
图 2  Dualconv结构图
图 3  C2f-Dualconv结构图
图 4  MSDA结构图
图 5  CCFM结构图
图 6  颈部网络优化前、后的效果对比图
图 7  跌倒检测数据集
标签OdEd总计
Fallen120236064808
Falling106732014268
Normal225467629016
表 1  数据集各类别标签统计表
图 8  数据增强图
类型名称配置
训练系统Windows 10
CPUIntel Core i9-12900K
GPURTX-3090
内存RAM32 GB
部署系统Ubuntu20.04
CPUCortex-A76,A55
GPUARMMali-G610
内存RAM8 GB
表 2  模型训练与部署平台信息
模块设置mAP50/
%
P/
%
R/
%
NP/
106
FLOPs/
109
CCFMMSDAC2f-Dualconv
85.786.980.83.008.1
86.082.382.71.966.6
86.386.681.63.308.4
86.387.481.92.707.4
86.686.783.02.246.8
86.785.982.13.007.7
86.686.481.81.786.1
88.687.884.52.066.3
表 3  消融实验的对比结果
图 9  各模型的训练测试结果
模型mAP50/%P/%R/%NP/106FLOPs/109F/(帧·s?1)
Nanodet76.878.558.20.931.4140.3
YOLOv585.587.879.32.507.182.1
YOLOv8n85.786.980.83.008.188.0
YOLOv9t85.786.378.11.736.459.2
YOLOv11n85.187.781.42.586.386.2
YOLOv8-D86.387.781.92.707.497.6
YOLOv8-C86.082.382.71.966.6100.7
YOLOv8-CD86.686.481.81.786.198.6
YOLOv8-CM86.686.783.02.246.891.6
CMD-YOLO88.687.884.52.066.3101.9
表 4  各模型的整体性能测试结果
图 10  Orange Pi5 Pro RK3588的实物图
模型A/MBS/sP/W
YOLOv55.000.02862.4869
YOLOv8n5.160.02672.5165
YOLOv9t8.450.05892.1433
YOLOv11n5.540.05872.4517
CMD-YOLO5.080.02972.2647
表 5  各模型部署后的性能对比
图 11  热力图效果的对比图
图 12  不同模型的可视化效果对比
1 CHOI S D, GUO L, KIM J, et al Comparison of fatal occupational injuries in construction industry in the United States, South Korea, and China[J]. International Journal of Industrial Ergonomics, 2019, 71: 64- 74
doi: 10.1016/j.ergon.2019.02.011
2 HU K, RAHMANDAD H, SMITH-JACKSON T, et al Factors influencing the risk of falls in the construction industry: a review of the evidence[J]. Construction Management and Economics, 2011, 29 (4): 397- 416
doi: 10.1080/01446193.2011.558104
3 GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580–587.
4 REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
5 HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980–2988.
6 CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6154–6162.
7 DELGADO-ESCAÑO R, CASTRO F M, CÓZAR J R, et al A cross-dataset deep learning-based classifier for people fall detection and identification[J]. Computer Methods and Programs in Biomedicine, 2020, 184: 105265
doi: 10.1016/j.cmpb.2019.105265
8 REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779–788.
9 REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517–6525.
10 REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. [2025-05-07]. https://arxiv.org/abs/1804.02767.
11 BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. [2025-05-21]. https://arxiv.org/abs/2004.10934.
12 LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]//European Conference on Computer Vision. Cham: Springer, 2016: 21–37.
13 HAN S, LIU X, MAO H, et al. EIE: efficient inference engine on compressed deep neural network [C]//Proceedings of the ACM/IEEE 43rd Annual International Symposium on Computer Architecture. Seoul: IEEE, 2016: 243–254.
14 赵俊杰, 周晓静, 李佳欣 改进YOLOV7的跌倒人员检测[J]. 计算机科学, 2024, 51 (Suppl.1): 613- 618
ZHAO Junjie, ZHOU Xiaojing, LI Jiaxin Improving the detection of fallen persons in YOLOV7[J]. Computer Science, 2024, 51 (Suppl.1): 613- 618
doi: 10.11896/jsjkx.230800039
15 朱胜豪, 钱承山, 阚希 改进YOLOv5的高精度跌倒检测算法[J]. 计算机工程与应用, 2024, 60 (11): 105- 114
ZHU Shenghao, QIAN Chengshan, KAN Xi High-precision fall detection algorithm with improved YOLOv5[J]. Computer Engineering and Applications, 2024, 60 (11): 105- 114
doi: 10.3778/j.issn.1002-8331.2307-0190
16 ZHAO D, SONG T, GAO J, et al YOLO-fall: a novel convolutional neural network model for fall detection in open spaces[J]. IEEE Access, 2024, 12: 26137- 26149
doi: 10.1109/ACCESS.2024.3362958
17 WANG H, XU S, CHEN Y, et al LFD-YOLO: a lightweight fall detection network with enhanced feature extraction and fusion[J]. Scientific Reports, 2025, 15: 5069
doi: 10.1038/s41598-025-89214-7
18 HUANG X, LI X, YUAN L, et al SDES-YOLO: a high-precision and lightweight model for fall detection in complex environments[J]. Scientific Reports, 2025, 15: 2026
doi: 10.1038/s41598-025-86593-9
19 ZHANG X, BAI J, QIAO G, et al YOLO-fall: a YOLO-based fall detection model with high precision, shrunk size, and low latency[J]. The Computer Journal, 2025, 68 (7): 804- 812
doi: 10.1093/comjnl/bxaf005
20 PRIADANA A, NGUYEN D L, VO X T, et al HFD-YOLO: improved YOLO network using efficient attention modules for real-time one-stage human fall detection[J]. IEEE Access, 2025, 13: 41248- 41258
doi: 10.1109/ACCESS.2025.3547360
21 ZHONG J, CHEN J, MIAN A DualConv: dual convolutional kernels for lightweight deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34 (11): 9528- 9535
doi: 10.1109/TNNLS.2022.3151138
22 JIAO J, TANG Y M, LIN K Y, et al DilateFormer: multi-scale dilated transformer for visual recognition[J]. IEEE Transactions on Multimedia, 2023, 25: 8906- 8919
doi: 10.1109/TMM.2023.3243616
23 ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 16965–16974.
24 CHENG G, SI Y, HONG H, et al Cross-scale feature fusion for object detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (3): 431- 435
doi: 10.1109/LGRS.2020.2975541
25 孙寿松, 李新凯, 张宏立, 等 嵌入式平台的番茄叶片病虫害检测模型[J]. 计算机工程与应用, 2025, 61 (16): 305- 314
SUN Shousong, LI Xinkai, ZHANG Hongli, et al Embedded platform for tomato leaf pest detection model[J]. Computer Engineering and Applications, 2025, 61 (16): 305- 314
doi: 10.3778/j.issn.1002-8331.2411-0193
26 宋芝文, 李伟, 谭伟, 等 基于YOLO V4-TLite的移动端君子兰病虫害检测方法[J]. 农业工程学报, 2025, 41 (5): 175- 181
SONG Zhiwen, LI Wei, TAN Wei, et al Detection method for Clivia miniata pests and diseases on mobile terminal based on YOLO V4-TLite[J]. Transactions of the Chinese Society of Agricultural Engineering, 2025, 41 (5): 175- 181
doi: 10.11975/j.issn.1002-6819.202409169
[1] 陈文强,冯琳越,王东丹,顾玉磊,赵轩. 融合动态风险图与多变量注意力机制的车辆轨迹预测模型[J]. 浙江大学学报(工学版), 2026, 60(3): 455-467.
[2] 武晓春,郭宁. 基于HMARU-net的隧道渗漏水轻量化检测方法[J]. 浙江大学学报(工学版), 2026, 60(3): 468-477.
[3] 胡从裕,殷晨波,马伟,杨超,颜士宽. 基于改进CNN-LSTM的挖掘机作业对象识别[J]. 浙江大学学报(工学版), 2026, 60(3): 536-545.
[4] 王爽,章熙泰,郭永存,孙守锁. 基于深度网络的可控混合式磁力耦合器退磁诊断[J]. 浙江大学学报(工学版), 2026, 60(2): 279-286.
[5] 李宪华,杜鹏飞,宋韬,邱洵,蔡钰. 基于多尺度滑窗注意力时序卷积网络的脑电信号分类[J]. 浙江大学学报(工学版), 2026, 60(2): 370-378.
[6] 杨明辉,宋牧原,付大喜,郭炎伟,卢贤锥,张文聪,郑伟龙. 基于多头自注意力-Bi-LSTM模型的盾构掘进引发的土体沉降预测[J]. 浙江大学学报(工学版), 2026, 60(2): 415-424.
[7] 周思瑶,夏楠,江佳鸿. 姿态引导的双分支换装行人重识别网络[J]. 浙江大学学报(工学版), 2026, 60(1): 71-80.
[8] 肖剑,何昕泽,程鸿亮,杨小苑,胡欣. 基于多尺度特征增强的航拍小目标检测算法[J]. 浙江大学学报(工学版), 2026, 60(1): 19-31.
[9] 董超群,汪战,廖平,谢帅,荣玉杰,周靖淞. 轻量化YOLOv5s-OCG的轨枕裂纹检测算法[J]. 浙江大学学报(工学版), 2025, 59(9): 1838-1845.
[10] 张学军,梁书滨,白万荣,张奉鹤,黄海燕,郭梅凤,陈卓. 基于异构图表征的源代码漏洞检测方法[J]. 浙江大学学报(工学版), 2025, 59(8): 1644-1652.
[11] 林宜山,左景,卢树华. 基于多头自注意力机制与MLP-Interactor的多模态情感分析[J]. 浙江大学学报(工学版), 2025, 59(8): 1653-1661.
[12] 翟亚红,陈雅玲,徐龙艳,龚玉. 改进YOLOv8s的轻量级无人机航拍小目标检测算法[J]. 浙江大学学报(工学版), 2025, 59(8): 1708-1717.
[13] 付家瑞,李兆飞,周豪,黄惟. 基于Convnextv2与纹理边缘引导的伪装目标检测[J]. 浙江大学学报(工学版), 2025, 59(8): 1718-1726.
[14] 杨荣泰,邵玉斌,杜庆治. 基于结构感知的少样本知识补全[J]. 浙江大学学报(工学版), 2025, 59(7): 1394-1402.
[15] 杨宇豪,郭永存,李德永,王爽. 基于视觉信息的煤矸识别分割定位方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1421-1433.