Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (3): 536-545    DOI: 10.3785/j.issn.1008-973X.2026.03.009
计算机技术、控制工程     
基于改进CNN-LSTM的挖掘机作业对象识别
胡从裕1(),殷晨波1,*(),马伟1,杨超1,颜士宽2
1. 南京工业大学 机械与动力工程学院,江苏 南京 211816
2. 江苏天宙检测科技有限公司,江苏 南京 210019
Object recognition of excavator operation based on improved CNN-LSTM
Congyu HU1(),Chenbo YIN1,*(),Wei MA1,Chao YANG1,Shikuan YAN2
1. College of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China
2. Jiangsu Tianzhou Testing Technology Limited Company, Nanjing 210019, China
 全文: PDF(3424 KB)   HTML
摘要:

针对传统挖掘机作业对象识别方法因计算模型复杂、易受光照条件影响,在实际应用中表现出明显局限性的问题,提出组合神经网络模型(HBA-CNN-LSTM-Attention),用于挖掘机作业对象识别. 该模型融合卷积神经网络(CNN)在提取空间特征方面的优势,引入压缩与激励(SE)注意力机制,实现对特征通道权重的自适应优化,提高了特征表达的有效性. 借助长短期记忆网络(LSTM)在处理时序信息中的建模能力,使模型在应对动态作业场景时更具稳定性. 为了进一步增强模型性能,采用最大信息系数(MIC)对输入特征进行筛选,以突出关键特征. 利用蜜獾优化算法(HBA)自动调整网络结构中的超参数,确保模型在训练过程中达到最优配置. 在典型作业数据集上的实验显示,该模型在分类任务中取得了96.61%的准确率,较传统模型在精度上有显著的提升. 实验结果验证了组合模型在复杂作业环境下的有效性与实用性.

关键词: 挖掘机作业对象组合神经网络特征选择蜜獾优化算法(HBA)注意力机制    
Abstract:

A hybrid neural network model (HBA-CNN-LSTM-Attention) was proposed for excavator operation object recognition in order to address the limitations of conventional excavator operation object recognition methods, which often suffered from complex computational models and high sensitivity to lighting conditions in practical applications. The strength of convolutional neural network (CNN) in spatial feature extraction was integrated and the squeeze-and-excitation (SE) attention mechanism was incorporated to adaptively optimize feature channel weights, thereby enhancing the effectiveness of feature representation. The model attained greater stability when dealing with dynamic operating scenarios by exploiting the modeling capability of long short-term memory (LSTM) network for temporal information. The maximum information coefficient (MIC) was employed to select input feature in order to further improve performance, highlighting the critical feature. The honey badger algorithm (HBA) was used to automatically tune the hyperparameters of the network, ensuring an optimal configuration during training. Experiments conducted on a representative operational dataset showed that the proposed model achieved a classification accuracy of 96.61%, representing a significant improvement over conventional model. Results verified the effectiveness and practicality of the hybrid model in complex operating environment.

Key words: excavator    operation object    combination neural network    feature selection    honey badger algorithm (HBA)    attention mechanism
收稿日期: 2025-06-30 出版日期: 2026-02-04
:  TP 181  
基金资助: 国家重点研发计划资助项目(2021YFB2011904).
通讯作者: 殷晨波     E-mail: hucongyu_iacm@163.com;yinchenbo@njtech.edu.cn
作者简介: 胡从裕(2001—),男,硕士生,从事工程机械智能化的研究. orcid.org/0009-0003-7266-3284. E-mail:hucongyu_iacm@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
胡从裕
殷晨波
马伟
杨超
颜士宽

引用本文:

胡从裕,殷晨波,马伟,杨超,颜士宽. 基于改进CNN-LSTM的挖掘机作业对象识别[J]. 浙江大学学报(工学版), 2026, 60(3): 536-545.

Congyu HU,Chenbo YIN,Wei MA,Chao YANG,Shikuan YAN. Object recognition of excavator operation based on improved CNN-LSTM. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 536-545.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.009        https://www.zjujournals.com/eng/CN/Y2026/V60/I3/536

图 1  典型作业对象及数据采集设备
图 2  数据采集云平台
设备型号主要参数
液压挖掘机SY980H574/2 100 kW/(r·min?1)
传感器HG3350G10NMPXM10~35 MPa/0.1%FS
控制器BODAS RC28-14/3050~250 Hz
CAN总线分析仪USBCAN-Ⅱ Pro50~8 000 kb/s
数据记录仪ZLG CANDTU-200UR5~1 000 kb/s
表 1  挖掘机实验平台的关键设备及主要参数
图 3  挖掘机的液压原理简图
特征特征变量
X1发动机转速/(r·min?1)
X2冷却液温度/℃
X3液压油温度/℃
X4铲斗挖掘先导压力/Pa
X5铲斗挖掘先导电压/mV
X6铲斗卸载先导压力/Pa
X7铲斗卸载先导电压/mV
X8铲斗大腔压力/Pa
X9斗杆挖掘先导压力/Pa
X10斗杆卸载先导压力/Pa
X11斗杆挖掘先导电压/mV
X12斗杆卸载先导电压/mV
X13斗杆大腔压力/Pa
X14斗杆小腔压力/Pa
X15动臂大腔压力/Pa
X16动臂小腔压力/Pa
X17前泵压力/Pa
X18后泵压力/Pa
表 2  初步筛选的特征
特征特征变量
X2冷却液温度/℃
X3液压油温度/℃
X5铲斗挖掘先导电压/mV
X7铲斗卸载先导电压/mV
X8铲斗大腔压力/Pa
X11斗杆挖掘先导电压/mV
X12斗杆卸载先导电压/mV
X13斗杆大腔压力/Pa
X14斗杆小腔压力/Pa
X15动臂大腔压力/Pa
X17前泵压力/Pa
X18后泵压力/Pa
表 3  基于MIC选择的特征
图 4  原始数据的自相关函数
图 5  噪声概率密度函数图
图 6  CNN网络结构
图 7  LSTM网络的结构
图 8  CNN-LSTM-Attention网络的结构
超参数数值
隐含层神经元数量 Nh[16, 128]
神经元丢弃率 d[0.1, 0.6]
初始学习率 r[1×10?6, 1×10?2]
L2正则化参数 CL[1×10?10, 1×10?2]
表 4  蜜獾优化的超参数
图 9  不同作业对象的分类结果
模型NhdrCL
CNN320.20.0010.0001
HBA-CNN730.317190.003386.21×10?5
GRU320.20.0010.0001
HBA-GRU660.223000.007074.04×10?9
LSTM320.20.0010.0001
HBA-LSTM430.117540.001279.47×10?8
CNN-LSTM-Attention320.20.0010.0001
HBA-CNN-LSTM-Attention760.475930.001534.37×10?6
表 5  不同模型的超参数设置
模型APRF1
CNN0.917950.915980.918080.92930
GRU0.838700.841600.842450.83803
LSTM0.939880.940080.943850.94215
CNN-LSTM-Attention0.966100.963230.963750.96335
表 6  蜜獾优化后模型的分类性能
模型ta/sts/s
CNN1.610.0107
HBA-CNN1.720.0115
GRU2.190.0146
HBA-GRU2.330.0155
LSTM1.750.0117
HBA-LSTM1.870.0125
CNN-LSTM-Attention3.970.0265
HBA-CNN-LSTM-Attention4.130.0275
表 7  各模型的实时预测时间
模型特征集APRF1
HBA-CNNS10.93080.93980.93830.9384
S20.92870.92230.92250.9224
S30.93250.92270.93230.9373
S40.87980.87910.87920.8896
HBA-GRUS10.87630.88770.89190.8762
S20.86210.86160.86200.8613
S30.87190.87160.87170.8712
S40.74430.74530.74420.7434
HBA-LSTMS10.95020.95600.95710.9566
S20.93300.93320.93470.9339
S30.94740.94070.94840.9445
S40.92890.93040.93520.9336
HBA-CNN-
LSTM-Attention
S10.98210.98110.98130.9812
S20.97840.97860.97730.9775
S30.97960.97810.97620.9771
S40.92430.91510.92020.9176
表 8  不同模型在各特征集上的性能指标
1 JIN Z, PAGILLA P, MASKE H, et al Task learning, intent prediction, and adaptive blended shared control with application to excavators[J]. IEEE Transactions on Control Systems Technology, 2021, 29 (1): 18- 28
doi: 10.1109/TCST.2019.2959536
2 陆亮, 吴军凯, 孙宁, 等 智能建造: 工程机械智能化[J]. 液压与气动, 2022, 46 (6): 1- 9
LU Liang, WU Junkai, SUN Ning, et al Intelligent construction: construction machinery intelligentization[J]. Chinese Hydraulics and Pneumatics, 2022, 46 (6): 1- 9
doi: 10.11832/j.issn.1000-4858.2022.06.001
3 李运华, 范茹军, 杨丽曼, 等 智能化挖掘机的研究现状与发展趋势[J]. 机械工程学报, 2020, 56 (13): 165- 178
LI Yunhua, FAN Rujun, YANG Liman, et al Research status and development trend of intelligent excavators[J]. Journal of Mechanical Engineering, 2020, 56 (13): 165- 178
doi: 10.3901/JME.2020.13.165
4 赵圣奎, 侯向泽, 王波 基于模糊控制算法的露天铁矿挖掘机控制研究[J]. 自动化应用, 2024, (24): 91- 93
ZHAO Shengkui, HOU Xiangze, WANG Bo Research on control of open-pit iron mine excavator based on fuzzy control algorithm[J]. Automation Application, 2024, (24): 91- 93
5 DOBSON A, MARSHALL J, LARSSON J Admittance control for robotic loading: design and experiments with a 1-tonne loader and a 14-tonne load-haul-dump machine[J]. Journal of Field Robotics, 2017, 34 (1): 123- 150
doi: 10.1002/rob.21654
6 MOGHADDAM R Y, KOTCHON A, LIPSETT M G Method and apparatus for on-line estimation of soil parameters during excavation[J]. Journal of Terramechanics, 2012, 49 (3/4): 173- 181
7 ALTHOEFER K, TAN C P, ZWEIRI Y H, et al Hybrid soil parameter measurement and estimation scheme for excavation automation[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58 (10): 3633- 3641
doi: 10.1109/TIM.2009.2018699
8 LI J, CHEN C, LI Y, et al Difficulty assessment of shoveling stacked materials based on the fusion of neural network and radar chart information[J]. Automation in Construction, 2021, 132: 103966
doi: 10.1016/j.autcon.2021.103966
9 SARATA S, KOYACHI N, SUGAWARA K. Field test of autonomous loading operation by wheel loader [C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice: IEEE, 2008: 2661–2666.
10 FERNANDO H, MARSHALL J What lies beneath: material classification for autonomous excavators using proprioceptive force sensing and machine learning[J]. Automation in Construction, 2020, 119: 103374
doi: 10.1016/j.autcon.2020.103374
11 LI S, WANG S, CHEN X, et al Application of physics-informed machine learning for excavator working resistance modeling[J]. Mechanical Systems and Signal Processing, 2024, 209: 111117
doi: 10.1016/j.ymssp.2024.111117
12 YUAN G, LI X, QIU P, et al Feature selection method based on wavelet similarity combined with maximum information coefficient[J]. Information Sciences, 2025, 699: 121801
doi: 10.1016/j.ins.2024.121801
13 王斐, 梁晓庚, 王彦奎, 等 增强小波系数的飞行数据奇异值阈值降噪[J]. 火力与指挥控制, 2013, 38 (7): 171- 173
WANG Fei, LIANG Xiaogeng, WANG Yankui, et al Flight data de-noising using enhanced wavelet coefficients and threshold shrinkage in wavelet transform with singular value decomposition[J]. Fire Control and Command Control, 2013, 38 (7): 171- 173
14 刘旭宙, 秦满忠, 郭晓, 等. 用噪声概率密度函数对比地震计观测性能 [C]//2018年中国地球科学联合学术年会论文集(二十四)——专题48: 环境地球物理技术应用与研究进展、专题49: 浅地表地球物理进展. 北京: [s. n. ], 2018: 64–67.
LIU Xuzhou, QIN Manzhong, GUO Xiao, et al. Comparison of seismometer observation performance with noise probability density function [C]// 2018 China Geosciences Joint Academic Annual Meeting (Vol. 24)—Session 48: Advances in Environmental Geophysical Technology Applications and Exploration; Session 49: Advances in Near-Surface Geophysics. Beijing: [s. n.], 2018: 64−67.
15 WU J, HAO Z, WANG S, et al Nonlinear comb narrow-band noise removal using unscented Kalman filter: feasibility and field test analysis[J]. Measurement, 2025, 242: 115928
doi: 10.1016/j.measurement.2024.115928
16 KOLARIK M, BURGET R, RIHA K. Comparing normalization methods for limited batch size segmentation neural networks [C]//Proceedings of the 43rd International Conference on Telecommunications and Signal Processing. Milan: IEEE, 2020: 677-680.
17 WANG Y, HONG K, ZOU J, et al A CNN-based visual sorting system with cloud-edge computing for flexible manufacturing systems[J]. IEEE Transactions on Industrial Informatics, 2020, 16 (7): 4726- 4735
doi: 10.1109/TII.2019.2947539
18 CHAKRABORTY S, BANIK J, ADDHYA S, et al. Study of dependency on number of LSTM units for character based text generation models [C]//Proceedings of the International Conference on Computer Science, Engineering and Applications. Gunupur: IEEE, 2020: 1–5.
[1] 陈文强,冯琳越,王东丹,顾玉磊,赵轩. 融合动态风险图与多变量注意力机制的车辆轨迹预测模型[J]. 浙江大学学报(工学版), 2026, 60(3): 455-467.
[2] 王爽,章熙泰,郭永存,孙守锁. 基于深度网络的可控混合式磁力耦合器退磁诊断[J]. 浙江大学学报(工学版), 2026, 60(2): 279-286.
[3] 李宪华,杜鹏飞,宋韬,邱洵,蔡钰. 基于多尺度滑窗注意力时序卷积网络的脑电信号分类[J]. 浙江大学学报(工学版), 2026, 60(2): 370-378.
[4] 杨明辉,宋牧原,付大喜,郭炎伟,卢贤锥,张文聪,郑伟龙. 基于多头自注意力-Bi-LSTM模型的盾构掘进引发的土体沉降预测[J]. 浙江大学学报(工学版), 2026, 60(2): 415-424.
[5] 周思瑶,夏楠,江佳鸿. 姿态引导的双分支换装行人重识别网络[J]. 浙江大学学报(工学版), 2026, 60(1): 71-80.
[6] 张学军,梁书滨,白万荣,张奉鹤,黄海燕,郭梅凤,陈卓. 基于异构图表征的源代码漏洞检测方法[J]. 浙江大学学报(工学版), 2025, 59(8): 1644-1652.
[7] 林宜山,左景,卢树华. 基于多头自注意力机制与MLP-Interactor的多模态情感分析[J]. 浙江大学学报(工学版), 2025, 59(8): 1653-1661.
[8] 翟亚红,陈雅玲,徐龙艳,龚玉. 改进YOLOv8s的轻量级无人机航拍小目标检测算法[J]. 浙江大学学报(工学版), 2025, 59(8): 1708-1717.
[9] 付家瑞,李兆飞,周豪,黄惟. 基于Convnextv2与纹理边缘引导的伪装目标检测[J]. 浙江大学学报(工学版), 2025, 59(8): 1718-1726.
[10] 杨荣泰,邵玉斌,杜庆治. 基于结构感知的少样本知识补全[J]. 浙江大学学报(工学版), 2025, 59(7): 1394-1402.
[11] 杨宇豪,郭永存,李德永,王爽. 基于视觉信息的煤矸识别分割定位方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1421-1433.
[12] 王圣举,张赞. 基于加速扩散模型的缺失值插补算法[J]. 浙江大学学报(工学版), 2025, 59(7): 1471-1480.
[13] 蔡永青,韩成,权巍,陈兀迪. 基于注意力机制的视觉诱导晕动症评估模型[J]. 浙江大学学报(工学版), 2025, 59(6): 1110-1118.
[14] 鞠文博,董华军. 基于上下文信息融合与动态采样的主板缺陷检测方法[J]. 浙江大学学报(工学版), 2025, 59(6): 1159-1168.
[15] 周翔宇,刘毅志,赵肄江,廖祝华,张德城. 面向目的地预测的层次化空间嵌入BiGRU模型[J]. 浙江大学学报(工学版), 2025, 59(6): 1211-1218.