Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (3): 478-486    DOI: 10.3785/j.issn.1008-973X.2026.03.003
交通工程、土木工程     
微生物基建筑材料开发与应用可行性
孙晓燕1(),华文岑1,王海龙1,*(),ALBIOL-IBÁÑEZJosé Ramón2
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 瓦伦西亚理工大学 建筑技术研究中心,西班牙 瓦伦西亚 46022
Feasibility on development and application of microbial building material
Xiaoyan SUN1(),Wencen HUA1,Hailong WANG1,*(),José Ramón ALBIOL-IBá?EZ2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Building Technology Research Centre, Polytechnic University of Valencia, Valencia 46022, Spain
 全文: PDF(2806 KB)   HTML
摘要:

按照地表环境的不同,区分海洋/热泉和风化物,探讨微生物碳酸钙沉积机制,围绕土体加固、结构修复和生物混凝土3个建筑材料开发方向,分析微生物种类、矿化材料类型及物理特征、矿化效率和产物性能. 研究表明,缺陷尺度和损伤龄期是微生物修复建筑材料的关键因素,0.1~1.5 mm裂缝宽度下,普通混凝土强度恢复率可以大于50%,微生物修复开裂龄期为28 d的混凝土强度恢复率为3 d的54%. 利用载体固定化技术,可以延长微生物基建筑材料活跃周期2.5倍,增大沉积碳酸钙晶体尺寸10~25倍,7 d内可以提升抗压强度约40%. 面向太空无人建造,海洋/热泉微生物更适合火星环境,风化物微生物更适合面向月球环境进行开发应用.

关键词: 混凝土绿色材料智能建造碳酸钙沉淀微生物    
Abstract:

The mechanism of microbial calcium carbonate deposition was explored by distinguishing between ocean/hot springs and weathered materials based on different surface environment. Three development directions of building materials which are soil reinforcement, structural repair, and bio-concrete were focused on microbial species, mineralized material types together with physical characteristics, mineralization efficiency, and product properties. Results show that defect size and damage age are key factors for microbial remediation of building materials. The strength recovery rate of ordinary concrete can reach over 50% under the crack width of 0.1~1.5 mm, and the strength recovery rate of concrete with 28 days of microbial remediation cracking age is 54% of that at 3 days. Carrier immobilization technology can be used to extend the active period of microbial based building materials by 2.5 times, increase the size of deposited calcium carbonate crystals by 10~25 times, and improve the compressive strength within 7 days by about 40%. Marine/hot spring microorganisms are more suitable for the Martian environment for unmanned construction in space, while weathered microorganisms are more suitable for development and application in the lunar environment.

Key words: concrete    green material    intelligent construction    calcium carbonate precipitation    microorganism
收稿日期: 2025-04-09 出版日期: 2026-02-04
:  TU 528  
基金资助: 国家自然科学基金资助项目(52478284);浙江省尖兵领雁计划资助项目(2023C01154);山西浙江大学新材料与化工研究院研发资助项目(2022SZ-TD016);中国建筑材料行业重大科技攻关揭榜挂帅项目(2023JBGS040).
通讯作者: 王海龙     E-mail: selina@zju.edu.cn;hlwang@zju.edu.cn
作者简介: 孙晓燕(1976—),女,教授,博导,从事增材智能建造混凝土结构的研究. orcid.org/0000-0003-0708-9565. E-mail:selina@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
孙晓燕
华文岑
王海龙
ALBIOL-IBá?EZJosé Ramón

引用本文:

孙晓燕,华文岑,王海龙,ALBIOL-IBÁÑEZJosé Ramón. 微生物基建筑材料开发与应用可行性[J]. 浙江大学学报(工学版), 2026, 60(3): 478-486.

Xiaoyan SUN,Wencen HUA,Hailong WANG,José Ramón ALBIOL-IBá?EZ. Feasibility on development and application of microbial building material. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 478-486.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.003        https://www.zjujournals.com/eng/CN/Y2026/V60/I3/478

图 1  海洋/热泉光合微生物诱导碳酸钙沉淀的原理
图 2  风化物中微生物诱导碳酸钙沉淀的原理
图 3  生物土体加固成型工艺对强度的影响
图 4  结构修复的微观形貌[32-33]
图 5  不同裂缝宽度的强度恢复率
图 6  生物混凝土的强度及产物微观形貌[43-47]
图 7  微生物对月球与火星环境的适应能力
图 8  微生物修复石质佛指[59]
图 9  微生物的固碳效率
1 HARDING J, FREEMAN C, FINNEY A, et al. Understanding the mechanisms of biomineralisation: a grand challenge [J]. Abstracts of Papers of the American Chemical Society, 2018, 255: 186254550.
2 刘昭明. 生物矿化中晶体生长机理及应用 [D]. 杭州: 浙江大学, 2017.
LIU Zhaoming. Crystal growth mechanisms and applications in biomineralization [D]. Hangzhou: Zhejiang University, 2017.
3 徐迅, 卞海宁 不同煅烧制度下制备超细碳酸钙的研究[J]. 牙膏工业, 2003, (3): 30- 32
XU Xun, BIAN Haining Study on preparation of ultrafine calcium carbonate under different calcination systems[J]. Toothpaste Industry, 2003, (3): 30- 32
4 周应征, 管大为, 成亮 微生物诱导碳酸盐在土体加固中的应用进展[J]. 高校地质学报, 2021, 27 (6): 697- 706
ZHOU Yingzheng, GUAN Dawei, CHENG Liang Review on application of microbially induced carbonate precipitation (MICP) for soil stabilization[J]. Geological Journal of China Universities, 2021, 27 (6): 697- 706
5 汪玉瑛. 生物成因碳酸钙矿化机制的仿生实验研究 [D]. 合肥: 中国科学技术大学, 2015.
WANG Yuying. Biomimetic experimental study on the mineralization mechanism of biogenic calcium carbonate [D]. Hefei: University of Science and Technology of China, 2015.
6 韩宪伟, 战美秋, 韩立彬, 等 混凝土微生物自愈合技术研究进展[J]. 河南建材, 2020, (5): 58- 59
HAN Xianwei, ZHAN Meiqiu, HAN Libin, et al Research progress on microbial self-healing technology of concrete[J]. Henan Building Materials, 2020, (5): 58- 59
7 王进春, 王玉乾, 李茜茜, 等 混凝土裂缝微生物自修复技术的研究[J]. 科技风, 2022, (20): 61- 65
WANG Jinchun, WANG Yuqian, LI Qianqian, et al Study on microbial self-repair technology of concrete cracks[J]. Technology Wind, 2022, (20): 61- 65
8 张锦程, 李俊, 肖鹏, 等 MICP加固砂土方法对比研究[J]. 土木与环境工程学报(中英文), 2023, 45 (6): 151- 157
ZHANG Jincheng, LI Jun, XIAO Peng, et al Comparative study on MICP-treatment schemes for sands[J]. Journal of Civil and Environmental Engineering, 2023, 45 (6): 151- 157
9 郑浩. 基于微生物诱导碳酸盐沉淀(MICP)的建筑渣土和剩余污泥混合改性方法 [D]. 杭州: 浙江理工大学, 2020.
ZHENG Hao. A hybrid modification method for construction residue soil and surplus sludge based on microbial induced carbonate precipitation (MICP) [D]. Hangzhou: Zhejiang Sci-Tech University, 2020.
10 谭远. 生物成因纤维状文石集合体的结构表征及其仿生制备 [D]. 南宁: 广西大学, 2016.
TAN Yuan. Structural characterization and biomimetic preparation of biogenic fibrous aragonite aggregates [D]. Nanning: Guangxi University, 2016.
11 ZHENG W C, ARUMUGAM K, ASHARI S E, et al Enhancement of biomass and calcium carbonate biomineralization of Chlorella vulgaris through Plackett–Burman screening and Box–Behnken optimization approach[J]. Molecules, 2020, 25 (15): 3416
doi: 10.3390/molecules25153416
12 UENISHI R, MATSUBARA H Calcium carbonate growth with the ring structure of stalactite-type minerals in a tuff breccia[J]. Crystals, 2021, 11 (9): 1117
doi: 10.3390/cryst11091117
13 BUNDELEVA I A, SHIROKOVA L S, POKROVSKY O S, et al. Experimental modeling of calcium carbonate precipitation by cyanobacterium Gloeocapsa sp [J]. Chemical Geology, 2014, 374/375: 44–60.
14 SUN X, MIAO L, CHEN R, et al Surface rainfall erosion resistance and freeze-thaw durability of bio-cemented and polymer-modified loess slopes[J]. Journal of Environmental Management, 2022, 301: 113883
doi: 10.1016/j.jenvman.2021.113883
15 ZHAO Q, LI L, LI C, et al Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease[J]. Journal of Materials in Civil Engineering, 2014, 26 (12): 04014094
doi: 10.1061/(ASCE)MT.1943-5533.0001013
16 於孝牛. 生物磷酸盐水泥和复合水泥的研制及其胶结机理[D]. 南京: 东南大学, 2016.
YU Xiaoniu. Development and cementation mechanism of bio-phosphate cement and composite cement [D]. Nanjing: Southeast University, 2016.
17 方祥位, 申春妮, 楚剑, 等 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36 (10): 2773- 2779
FANG Xiangwei, SHEN Chunni, CHU Jian, et al An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2015, 36 (10): 2773- 2779
18 FANG X, YANG Y, CHEN Z, et al Influence of fiber content and length on engineering properties of MICP-treated coral sand[J]. Geomicrobiology Journal, 2020, 37 (6): 582- 594
doi: 10.1080/01490451.2020.1743392
19 刘汉龙, 马国梁, 肖杨, 等 微生物加固岛礁地基现场试验研究[J]. 地基处理, 2019, 1 (1): 26- 31
LIU Hanlong, MA Guoliang, XIAO Yang, et al In situ experimental research on calcareous foundation stabilization using MICP technique on the reclaimed coral reef islands[J]. Journal of Ground Improvement, 2019, 1 (1): 26- 31
20 LAMBERT S E, RANDALL D G Manufacturing bio-bricks using microbial induced calcium carbonate precipitation and human urine[J]. Water Research, 2019, 160: 158- 166
doi: 10.1016/j.watres.2019.05.069
21 雍琪军, 邵光辉, 戴浩然, 等 微生物-石膏固化铅污染土胶结速率与污染物控制研究[J]. 应用化工, 2024, 53 (6): 1284- 1289
YONG Qijun, SHAO Guanghui, DAI Haoran, et al Cementation rate and pollutant control of lead-contaminated soil solidified by microorganisms and gypsum[J]. Applied Chemical Industry, 2024, 53 (6): 1284- 1289
22 李杰, 康博, 查甫生 冻融循环作用下MICP固化铅污染土的强度与浸出特性研究[J]. 工程地质学报, 2024, 32 (2): 440- 447
LI Jie, KANG Bo, ZHA Fusheng Strength and leaching characteristics of MICP-solidified lead-contaminated soils under the action of freeze-thaw cycles[J]. Journal of Engineering Geology, 2024, 32 (2): 440- 447
23 仲勇亮. 微生物一氧化镁协同作用加固粉土的试验研究 [D]. 南京: 南京林业大学, 2023.
ZHONG Yongliang. Experimental study on reinforcement of silt by microbial-magnesium oxide synergistic action [D]. Nanjing: Nanjing Forestry University, 2023.
24 谈叶飞, 郭张军, 陈鸿杰, 等 微生物追踪固结技术在堤防防渗中的应用[J]. 河海大学学报: 自然科学版, 2018, 46 (6): 521- 526
TAN Yefei, GUO Zhangjun, CHEN Hongjie, et al Study on application of microbial tracing consolidation technology in the seepage prevention of earth bank[J]. Journal of Hohai University: Natural Sciences, 2018, 46 (6): 521- 526
25 ISHARA S, ANAND R, PARIHAR A, et al Suitability and challenges of biomineralization techniques for ground improvement[J]. International Journal of Environmental Research, 2024, 18 (3): 52
doi: 10.1007/s41742-024-00593-7
26 林学东. MICP技术改良花岗岩残积土非饱和强度及渗透特性试验研究 [D]. 南昌: 南昌大学, 2024.
LIN Xuedong. Experimental study on the improvement of unsaturated strength and permeability characteristics of granite residual soil by MICP technology [D]. Nanchang: Nanchang University, 2024.
27 王曦. 微生物诱导碳酸钙沉淀技术(MICP)改良分散性土的试验研究 [D]. 长春: 吉林大学, 2023.
WANG Xi. Experimental study on the improvement of dispersive soil by microbial induced calcium carbonate precipitation technology (MICP) [D]. Changchun: Jilin University, 2023.
28 DIKSHIT R, DEY A, GUPTA N, et al Space bricks: from LSS to machinable structures via MICP[J]. Ceramics International, 2021, 47 (10): 14892- 14898
doi: 10.1016/j.ceramint.2020.07.309
29 DIKSHIT R, GUPTA N, DEY A, et al Microbial induced calcite precipitation can consolidate Martian and lunar regolith simulants[J]. PLoS One, 2022, 17 (4): e0266415
doi: 10.1371/journal.pone.0266415
30 陈龙. 基于微生物一次掺入-拌合加固赤泥的试验与研究 [D]. 南京: 南京林业大学, 2023.
CHEN Long. Experimental study and research on reinforcement of red mud based on microbial single incorporation-mixing [D]. Nanjing: Nanjing Forestry University, 2023.
31 LI Y, WEN K J, LI L, et al Experimental investigation on compression resistance of bio-bricks[J]. Construction and Building Materials, 2020, 265: 120751- 120757
doi: 10.1016/j.conbuildmat.2020.120751
32 DHAMI N K, REDDY M S, MUKHERJEE A Improvement in strength properties of ash bricks by bacterial calcite[J]. Ecological Engineering, 2012, 39: 31- 35
doi: 10.1016/j.ecoleng.2011.11.011
33 马锋玲, 李文培, 徐耀, 等 微生物矿化修复混凝土表面缺陷的现场试验[J]. 中国水利水电科学研究院学报(中英文), 2022, 20 (5): 411- 421
MA Fengling, LI Wenpei, XU Yao, et al Field experiment of repairing concrete surface defects by microbial mineralization[J]. Journal of China Institute of Water Resources and Hydropower Research, 2022, 20 (5): 411- 421
34 李津达. 微生物诱导碳酸钙沉淀在裂隙岩体加固中的应用 [D]. 合肥: 合肥工业大学, 2019.
LI Jinda. Application of microbial induced calcium carbonate precipitation in the reinforcement of fractured rock mass [D]. Hefei: Hefei University of Technology, 2019.
35 SALEEM B, HUSSAIN A, KHATTAK A, et al Performance evaluation of bacterial self-healing rigid pavement by incorporating recycled brick aggregate[J]. Cement and Concrete Composites, 2021, 117: 103914
doi: 10.1016/j.cemconcomp.2020.103914
36 FAN L, ZHENG J, PENG S, et al Experimental investigation on the influence of crack width of asphalt concrete on the repair effect of microbially induced calcite precipitation[J]. Materials, 2023, 16 (9): 3576
doi: 10.3390/ma16093576
37 ZHANG M, ZHANG Y, ZHANG R, et al Effect of MICP-recycled GFRP fiber on the self-repairing properties of concrete[J]. Journal of Building Engineering, 2024, 96: 110513
doi: 10.1016/j.jobe.2024.110513
38 徐晶, 王彬彬 陶粒负载微生物的混凝土开裂自修复研究[J]. 材料导报, 2017, 31 (14): 127- 131
XU Jing, WANG Binbin Research on self-healing of concrete cracks by ceramsite immobilized microorganism[J]. Materials Reports, 2017, 31 (14): 127- 131
39 HU K, RONG H, SHI Y, et al Microbial repair materials based on sodium alginate modification for mortar crack repair[J]. Magazine of Concrete Research, 2023, 75 (12): 638- 648
doi: 10.1680/jmacr.22.00237
40 SHAHEEN N, KHUSHNOOD A R, KHALIQ W, et al Synthesis and characterization of bio-immobilized nano/micro inert and reactive additives for feasibility investigation in self-healing concrete[J]. Construction and Building Materials, 2019, 226: 492- 506
doi: 10.1016/j.conbuildmat.2019.07.202
41 王金旭. MICP自修复再生混凝土裂缝修复及力学性能试验研究 [D]. 包头: 内蒙古科技大学, 2023.
WANG Jinxu. Experimental study on crack repair and mechanical properties of MICP self-healing recycled concrete [D]. Baotou: Inner Mongolia University of Science and Technology, 2023.
42 ACHAL V, PAN X, ÖZYURT N Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation[J]. Ecological Engineering, 2011, 37 (4): 554- 559
doi: 10.1016/j.ecoleng.2010.11.009
43 刘仲洋, 王山, 赵飞, 等 适于挤出型3D打印的微生物矿化纤维微筋混凝土制备与性能研究[J]. 混凝土, 2023, (12): 237- 242
LIU Zhongyang, WANG Shan, ZHAO Fei, et al Preparation and performance study of microbial mineralized fiber micro-reinforced concrete suitable for extrusion-type 3D printing[J]. Concrete, 2023, (12): 237- 242
44 YANG Z, CHENG X A performance study of high-strength microbial mortar produced by low pressure grouting for the reinforcement of deteriorated masonry structures[J]. Construction and Building Materials, 2013, 41: 505- 515
doi: 10.1016/j.conbuildmat.2012.12.055
45 戴煜伦, 谢春燕, 符超, 等 不同载体载入微生物对混凝土修复性能的影响研究[J]. 西南师范大学学报: 自然科学版, 2021, 46 (12): 95- 100
DAI Yulun, XIE Chunyan, FU Chao, et al On influence of microorganism loaded with different carriers on concrete repair performance[J]. Journal of Southwest China Normal University: Natural Science Edition, 2021, 46 (12): 95- 100
46 WANG J, VAN TITTELBOOM K, DE BELIE N, et al Use of silica gel or polyurethane immobilized bacteria for self-healing concrete[J]. Construction and Building Materials, 2011, 26 (1): 532- 540
47 杨华, 刘琼 天然文石-方解石的高温相变及热膨胀性质[J]. 岩石矿物学杂志, 2021, 40 (1): 142- 152
YANG Hua, LIU Qiong High-temperature phase transition and thermal expansivity of natural aragonite-calcite[J]. Acta Petrologica et Mineralogica, 2021, 40 (1): 142- 152
48 于雯, 李雄耀, 王世杰 月球探测中月面热环境影响的研究现状[J]. 地球科学进展, 2012, 27 (12): 1337- 1343
YU Wen, LI Xiongyao, WANG Shijie Effect of thermal environment on lunar exploration: a review[J]. Advances in Earth Science, 2012, 27 (12): 1337- 1343
49 王赤, 李磊, 张爱兵, 等 月表太阳风和粒子辐射环境: “嫦娥四号” 观测新结果[J]. 深空探测学报(中英文), 2022, 9 (3): 239- 249
WANG Chi, LI Lei, ZHANG Aibing, et al The solar wind and particle radiation environment on the surface of the moon: new observations from Chang’E-4[J]. Journal of Deep Space Exploration, 2022, 9 (3): 239- 249
50 HASSLER M D, ZEITLIN C, WIMMER-SCHWEINGRUBER F R, et al Mars’ surface radiation environment measured with the Mars science laboratory’s curiosity rover[J]. Science, 2014, 343 (6169): 1244797
doi: 10.1126/science.1244797
51 杨枭, 张志忍, 汪铁林, 等 微重力条件对小球藻固碳能力与油脂积累的影响[J]. 可再生能源, 2020, 38 (6): 725- 731
YANG Xiao, ZHANG Zhiren, WANG Tielin, et al The effect of microgravity conditions on CO2 fixation and lipid production of Chlorella pyrenoidosa[J]. Renewable Energy Resources, 2020, 38 (6): 725- 731
52 张志忍, 王成成, 王为国, 等 模拟微重力环境及普通环境下小球藻的培养[J]. 武汉工程大学学报, 2016, 38 (6): 521- 526
ZHANG Zhiren, WANG Chengcheng, WANG Weiguo, et al Culture of chlorella sp. in simulated microgravity and general conditions[J]. Journal of Wuhan Institute of Technology, 2016, 38 (6): 521- 526
53 DE VERA J P, ALAWI M, BACKHAUS T, et al Limits of life and the habitability of Mars: the ESA space experiment BIOMEX on the ISS[J]. Astrobiology, 2019, 19 (2): 145- 157
doi: 10.1089/ast.2018.1897
54 NIEDERWIESER T, KOCIOLEK P, KLAUS D A review of algal research in space[J]. Acta Astronautica, 2018, 146: 359- 367
doi: 10.1016/j.actaastro.2018.03.026
55 谢和平, 张国庆, 李存宝 月球恒温层地下空间利用探索构想[J]. 工程科学与技术, 2020, (1): 1- 8
XIE Heping, ZHANG Guoqing, LI Cunbao Scheme of underground space utilization of lunar thermostatic layer[J]. Advanced Engineering Sciences, 2020, (1): 1- 8
56 史金权, 付贵永, 刘汉龙, 等 微生物加固模拟月壤强度特性试验研究[J]. 土木与环境工程学报(中英文), 2025, 47 (2): 20- 29
SHI Jinquan, FU Guiyong, LIU Hanlong, et al Strength of lunar regolith simulant reinforced by MICP[J]. Journal of Civil and Environmental Engineering, 2025, 47 (2): 20- 29
57 CASTELEIN S M, AARTS T F, SCHLEPPI J, et al Iron can be microbially extracted from Lunar and Martian regolith simulants and 3D printed into tough structural materials[J]. PLoS One, 2021, 16 (4): e0249962
doi: 10.1371/journal.pone.0249962
58 中国工程建设标准化协会. 微生物自修复混凝土应用技术规程: T/CECS 973—2021 [S]. 北京: 中国计划出版社, 2021.
59 刘汉龙, 韩绍康, 陈卉丽, 等 潮湿环境砂岩质石窟岩体微生物加固补配修复方法[J]. 土木与环境工程学报(中英文), 2022, 44 (6): 219- 220
LIU Hanlong, HAN Shaokang, CHEN Huili, et al Microbial reinforcement and repair method of sandstone grottoes in humid environment[J]. Journal of Civil and Environmental Engineering, 2022, 44 (6): 219- 220
60 Concrete needs to lose its colossal carbon footprint [J]. Nature, 2021, 597(7878): 593–594.
61 廖赞, 张景辉, 张生银, 等 碳中和背景下微藻生物固碳技术探究[J]. 工业微生物, 2024, 54 (3): 65- 67
LIAO Zan, ZHANG Jinghui, ZHANG Shengyin, et al An investigation of microalgae biological carbon sequestration technology in the context of carbon neutrality[J]. Industrial Microbiology, 2024, 54 (3): 65- 67
62 龙成凤, 张达娟, 王泽斌, 等 三种微藻对不同氮源去除率及CO2固定效率的研究[J]. 天津农学院学报, 2023, 30 (5): 34- 39
LONG Chengfeng, ZHANG Dajuan, WANG Zebin, et al Study on the removal rate of different nitrogen sources and CO2 fixation efficiency of three microalgae[J]. Journal of Tianjin Agricultural University, 2023, 30 (5): 34- 39
63 龙菲平, 迟庆雷 微藻生物固碳技术研究和应用情况[J]. 智能建筑与智慧城市, 2022, (4): 126- 129
LONG Feiping, CHI Qinglei Research and application of microalgae-based bio-carbon sequestration technology[J]. Intelligent Building and Smart City, 2022, (4): 126- 129
64 WANG B, LI Y Q, WU N, et al CO2 bio-mitigation using microalgae[J]. Applied Microbiology and Biotechnology, 2008, 79 (5): 707- 718
doi: 10.1007/s00253-008-1518-y
65 胡其志, 刘彻德, 庄心善 反硝化微生物固化砂土的试验研究[J]. 湖北工业大学学报, 2021, 36 (4): 46- 51
HU Qizhi, LIU Chede, ZHUANG Xinshan Experimental study on denitrifying bacteria solidified sand[J]. Journal of Hubei University of Technology, 2021, 36 (4): 46- 51
66 魏红俊, 闫洪生, 朱亚光, 等 嗜碱芽孢杆菌H4对再生骨料性能的改性研究[J]. 混凝土, 2023, (5): 65- 71
WEI Hongjun, YAN Hongsheng, ZHU Yaguang, et al Modification of regenerated aggregate by bacillus basophilus H4[J]. Concrete, 2023, (5): 65- 71
67 SAHOO K K, SATHYAN K A, KUMARI C, et al Investigation of cement mortar incorporating Bacillus sphaericus[J]. International Journal of Smart and Nano Materials, 2016, 7 (2): 91- 105
doi: 10.1080/19475411.2016.1205157
68 YIN J Study on the wind erosion resistance of desert soil induced by bacillus megaterium[J]. Journal of Architectural Research and Development, 2024, 8 (6): 63- 69
doi: 10.26689/jard.v8i6.8954
69 张茜, 叶为民, 刘樟荣, 等 基于生物诱导碳酸钙沉淀的土体固化研究进展[J]. 岩土力学, 2022, 43 (2): 345- 357
ZHANG Qian, YE Weimin, LIU Zhangrong, et al Advances in soil cementation by biologically induced calcium carbonate precipitation[J]. Rock and Soil Mechanics, 2022, 43 (2): 345- 357
70 耿闻继. 巴氏芽孢八叠球菌的矿化性能研究及其在混凝土微裂缝修复中的应用 [D]. 天津: 天津科技大学, 2023.
GENG Wenji. Study on mineralization performance of sporosarcina pasteurii and its application in micro-crack repair of concrete [D]. Tianjin: Tianjin University of Science and Technology, 2023.
71 UCL BUSINESS LTD. Engineered living materials: EP22783551.9 [P]. 2024-07-24.
72 OLENA R, STEPHANIE I, MATTHIAS A, et al 3D bioprinting of mineralizing cyanobacteria as novel approach for the fabrication of living building materials[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1145177
doi: 10.3389/fbioe.2023.1145177
73 张一佳, 严德强, 曲晶, 等 微生物诱导碳酸钙沉积(MICP)固化土体研究进展[J]. 土木工程, 2024, 13 (5): 603- 612
ZHANG Yijia, YAN Deqiang, QU Jing, et al Research progress on soil solidification by microbial-induced calcium carbonate deposition (MICP)[J]. Hans Journal of Civil Engineering, 2024, 13 (5): 603- 612
doi: 10.12677/hjce.2024.135065
[1] 林文彬,刘先锋,高玉朋,曹生根,陈祥航,程晓辉. 海水环境下MICP加固海砂耐候性试验研究[J]. 浙江大学学报(工学版), 2025, 59(8): 1746-1754.
[2] 李作勇,吴创周,何稼,成亮,张丰收. 微生物矿化裂隙岩体加固及其应用研究进展[J]. 浙江大学学报(工学版), 2025, 59(11): 2336-2351.
[3] 王冲,戴理朝,陈斌. 基于高斯过程回归的锈蚀RC梁抗剪承载力概率模型[J]. 浙江大学学报(工学版), 2025, 59(11): 2352-2360.
[4] 冯思远,陶宇宸,金振奋,赵唯坚. 轴压比和面承板厚度对混合节点抗震性能的影响[J]. 浙江大学学报(工学版), 2024, 58(6): 1185-1197.
[5] 邓舒文,邵旭东,晏班夫,邱明红. 轻型组合桥梁负弯矩区接缝抗弯性能试验[J]. 浙江大学学报(工学版), 2024, 58(2): 399-412.
[6] 刘慈军,李立峰,邵旭东,陈涛,张冠华,王佳伟,杨华振,赵亚龙. 新型UHPC-NC组合盖梁的结构设计与试验分析[J]. 浙江大学学报(工学版), 2024, 58(11): 2355-2363.
[7] 朱毓豪,杨朝山,陈辉国,穆锐,曾超,任俊儒,雷屹欣. 纤维改性电磁吸波集料混凝土的吸波特性和机械性能[J]. 浙江大学学报(工学版), 2024, 58(10): 2128-2136.
[8] 吴柯娴,金德均,金伟良,范雪华,黄跃林,何晓宇. 考虑可持续性的RC结构全寿命多属性决策[J]. 浙江大学学报(工学版), 2023, 57(8): 1562-1572.
[9] 余思臻,漆天奇,王桥,程勇刚,周伟,常晓林. 混凝土热-水-化-干湿应变多场耦合模型[J]. 浙江大学学报(工学版), 2023, 57(8): 1585-1596.
[10] 田壮,肖官衍,金伟良,夏晋,程新. 基于复合材料理论的混凝土内多离子扩散模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1393-1401.
[11] 陈曦泽,贾俊峰,白玉磊,郭彤,杜修力. 基于XGBoost-SHAP的钢管混凝土柱轴向承载力预测模型[J]. 浙江大学学报(工学版), 2023, 57(6): 1061-1070.
[12] 王钰轲,曹天才,宋迎宾,邵景干,余翔,董博文. 基于菌促方法和酶促方法的黄河泥沙加固参数试验研究[J]. 浙江大学学报(工学版), 2023, 57(6): 1100-1110.
[13] 吴一凡,潘文豪,罗尧治. 大跨钢-混凝土组合楼盖的优化设计[J]. 浙江大学学报(工学版), 2023, 57(5): 988-996.
[14] 李明厚,SELYUTINA Nina ,SMIRNOV Ivan ,张祥,李贝贝,刘元珍,张玉. 基于热裂纹演化的玻化微珠保温混凝土渗透性能分析[J]. 浙江大学学报(工学版), 2023, 57(2): 367-379.
[15] 占斯宁,袁栋栋,林永钢,张仪萍,周永潮,张土乔. 微生物作用下含有机质沉积物起动的定量研究[J]. 浙江大学学报(工学版), 2023, 57(10): 2126-2132.