| 交通工程、土木工程 |
|
|
|
|
| 微生物基建筑材料开发与应用可行性 |
孙晓燕1( ),华文岑1,王海龙1,*( ),ALBIOL-IBÁÑEZJosé Ramón2 |
1. 浙江大学 建筑工程学院,浙江 杭州 310058 2. 瓦伦西亚理工大学 建筑技术研究中心,西班牙 瓦伦西亚 46022 |
|
| Feasibility on development and application of microbial building material |
Xiaoyan SUN1( ),Wencen HUA1,Hailong WANG1,*( ),José Ramón ALBIOL-IBá?EZ2 |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Building Technology Research Centre, Polytechnic University of Valencia, Valencia 46022, Spain |
引用本文:
孙晓燕,华文岑,王海龙,ALBIOL-IBÁÑEZJosé Ramón. 微生物基建筑材料开发与应用可行性[J]. 浙江大学学报(工学版), 2026, 60(3): 478-486.
Xiaoyan SUN,Wencen HUA,Hailong WANG,José Ramón ALBIOL-IBá?EZ. Feasibility on development and application of microbial building material. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 478-486.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.003
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I3/478
|
| 1 |
HARDING J, FREEMAN C, FINNEY A, et al. Understanding the mechanisms of biomineralisation: a grand challenge [J]. Abstracts of Papers of the American Chemical Society, 2018, 255: 186254550.
|
| 2 |
刘昭明. 生物矿化中晶体生长机理及应用 [D]. 杭州: 浙江大学, 2017. LIU Zhaoming. Crystal growth mechanisms and applications in biomineralization [D]. Hangzhou: Zhejiang University, 2017.
|
| 3 |
徐迅, 卞海宁 不同煅烧制度下制备超细碳酸钙的研究[J]. 牙膏工业, 2003, (3): 30- 32 XU Xun, BIAN Haining Study on preparation of ultrafine calcium carbonate under different calcination systems[J]. Toothpaste Industry, 2003, (3): 30- 32
|
| 4 |
周应征, 管大为, 成亮 微生物诱导碳酸盐在土体加固中的应用进展[J]. 高校地质学报, 2021, 27 (6): 697- 706 ZHOU Yingzheng, GUAN Dawei, CHENG Liang Review on application of microbially induced carbonate precipitation (MICP) for soil stabilization[J]. Geological Journal of China Universities, 2021, 27 (6): 697- 706
|
| 5 |
汪玉瑛. 生物成因碳酸钙矿化机制的仿生实验研究 [D]. 合肥: 中国科学技术大学, 2015. WANG Yuying. Biomimetic experimental study on the mineralization mechanism of biogenic calcium carbonate [D]. Hefei: University of Science and Technology of China, 2015.
|
| 6 |
韩宪伟, 战美秋, 韩立彬, 等 混凝土微生物自愈合技术研究进展[J]. 河南建材, 2020, (5): 58- 59 HAN Xianwei, ZHAN Meiqiu, HAN Libin, et al Research progress on microbial self-healing technology of concrete[J]. Henan Building Materials, 2020, (5): 58- 59
|
| 7 |
王进春, 王玉乾, 李茜茜, 等 混凝土裂缝微生物自修复技术的研究[J]. 科技风, 2022, (20): 61- 65 WANG Jinchun, WANG Yuqian, LI Qianqian, et al Study on microbial self-repair technology of concrete cracks[J]. Technology Wind, 2022, (20): 61- 65
|
| 8 |
张锦程, 李俊, 肖鹏, 等 MICP加固砂土方法对比研究[J]. 土木与环境工程学报(中英文), 2023, 45 (6): 151- 157 ZHANG Jincheng, LI Jun, XIAO Peng, et al Comparative study on MICP-treatment schemes for sands[J]. Journal of Civil and Environmental Engineering, 2023, 45 (6): 151- 157
|
| 9 |
郑浩. 基于微生物诱导碳酸盐沉淀(MICP)的建筑渣土和剩余污泥混合改性方法 [D]. 杭州: 浙江理工大学, 2020. ZHENG Hao. A hybrid modification method for construction residue soil and surplus sludge based on microbial induced carbonate precipitation (MICP) [D]. Hangzhou: Zhejiang Sci-Tech University, 2020.
|
| 10 |
谭远. 生物成因纤维状文石集合体的结构表征及其仿生制备 [D]. 南宁: 广西大学, 2016. TAN Yuan. Structural characterization and biomimetic preparation of biogenic fibrous aragonite aggregates [D]. Nanning: Guangxi University, 2016.
|
| 11 |
ZHENG W C, ARUMUGAM K, ASHARI S E, et al Enhancement of biomass and calcium carbonate biomineralization of Chlorella vulgaris through Plackett–Burman screening and Box–Behnken optimization approach[J]. Molecules, 2020, 25 (15): 3416
doi: 10.3390/molecules25153416
|
| 12 |
UENISHI R, MATSUBARA H Calcium carbonate growth with the ring structure of stalactite-type minerals in a tuff breccia[J]. Crystals, 2021, 11 (9): 1117
doi: 10.3390/cryst11091117
|
| 13 |
BUNDELEVA I A, SHIROKOVA L S, POKROVSKY O S, et al. Experimental modeling of calcium carbonate precipitation by cyanobacterium Gloeocapsa sp [J]. Chemical Geology, 2014, 374/375: 44–60.
|
| 14 |
SUN X, MIAO L, CHEN R, et al Surface rainfall erosion resistance and freeze-thaw durability of bio-cemented and polymer-modified loess slopes[J]. Journal of Environmental Management, 2022, 301: 113883
doi: 10.1016/j.jenvman.2021.113883
|
| 15 |
ZHAO Q, LI L, LI C, et al Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease[J]. Journal of Materials in Civil Engineering, 2014, 26 (12): 04014094
doi: 10.1061/(ASCE)MT.1943-5533.0001013
|
| 16 |
於孝牛. 生物磷酸盐水泥和复合水泥的研制及其胶结机理[D]. 南京: 东南大学, 2016. YU Xiaoniu. Development and cementation mechanism of bio-phosphate cement and composite cement [D]. Nanjing: Southeast University, 2016.
|
| 17 |
方祥位, 申春妮, 楚剑, 等 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36 (10): 2773- 2779 FANG Xiangwei, SHEN Chunni, CHU Jian, et al An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2015, 36 (10): 2773- 2779
|
| 18 |
FANG X, YANG Y, CHEN Z, et al Influence of fiber content and length on engineering properties of MICP-treated coral sand[J]. Geomicrobiology Journal, 2020, 37 (6): 582- 594
doi: 10.1080/01490451.2020.1743392
|
| 19 |
刘汉龙, 马国梁, 肖杨, 等 微生物加固岛礁地基现场试验研究[J]. 地基处理, 2019, 1 (1): 26- 31 LIU Hanlong, MA Guoliang, XIAO Yang, et al In situ experimental research on calcareous foundation stabilization using MICP technique on the reclaimed coral reef islands[J]. Journal of Ground Improvement, 2019, 1 (1): 26- 31
|
| 20 |
LAMBERT S E, RANDALL D G Manufacturing bio-bricks using microbial induced calcium carbonate precipitation and human urine[J]. Water Research, 2019, 160: 158- 166
doi: 10.1016/j.watres.2019.05.069
|
| 21 |
雍琪军, 邵光辉, 戴浩然, 等 微生物-石膏固化铅污染土胶结速率与污染物控制研究[J]. 应用化工, 2024, 53 (6): 1284- 1289 YONG Qijun, SHAO Guanghui, DAI Haoran, et al Cementation rate and pollutant control of lead-contaminated soil solidified by microorganisms and gypsum[J]. Applied Chemical Industry, 2024, 53 (6): 1284- 1289
|
| 22 |
李杰, 康博, 查甫生 冻融循环作用下MICP固化铅污染土的强度与浸出特性研究[J]. 工程地质学报, 2024, 32 (2): 440- 447 LI Jie, KANG Bo, ZHA Fusheng Strength and leaching characteristics of MICP-solidified lead-contaminated soils under the action of freeze-thaw cycles[J]. Journal of Engineering Geology, 2024, 32 (2): 440- 447
|
| 23 |
仲勇亮. 微生物一氧化镁协同作用加固粉土的试验研究 [D]. 南京: 南京林业大学, 2023. ZHONG Yongliang. Experimental study on reinforcement of silt by microbial-magnesium oxide synergistic action [D]. Nanjing: Nanjing Forestry University, 2023.
|
| 24 |
谈叶飞, 郭张军, 陈鸿杰, 等 微生物追踪固结技术在堤防防渗中的应用[J]. 河海大学学报: 自然科学版, 2018, 46 (6): 521- 526 TAN Yefei, GUO Zhangjun, CHEN Hongjie, et al Study on application of microbial tracing consolidation technology in the seepage prevention of earth bank[J]. Journal of Hohai University: Natural Sciences, 2018, 46 (6): 521- 526
|
| 25 |
ISHARA S, ANAND R, PARIHAR A, et al Suitability and challenges of biomineralization techniques for ground improvement[J]. International Journal of Environmental Research, 2024, 18 (3): 52
doi: 10.1007/s41742-024-00593-7
|
| 26 |
林学东. MICP技术改良花岗岩残积土非饱和强度及渗透特性试验研究 [D]. 南昌: 南昌大学, 2024. LIN Xuedong. Experimental study on the improvement of unsaturated strength and permeability characteristics of granite residual soil by MICP technology [D]. Nanchang: Nanchang University, 2024.
|
| 27 |
王曦. 微生物诱导碳酸钙沉淀技术(MICP)改良分散性土的试验研究 [D]. 长春: 吉林大学, 2023. WANG Xi. Experimental study on the improvement of dispersive soil by microbial induced calcium carbonate precipitation technology (MICP) [D]. Changchun: Jilin University, 2023.
|
| 28 |
DIKSHIT R, DEY A, GUPTA N, et al Space bricks: from LSS to machinable structures via MICP[J]. Ceramics International, 2021, 47 (10): 14892- 14898
doi: 10.1016/j.ceramint.2020.07.309
|
| 29 |
DIKSHIT R, GUPTA N, DEY A, et al Microbial induced calcite precipitation can consolidate Martian and lunar regolith simulants[J]. PLoS One, 2022, 17 (4): e0266415
doi: 10.1371/journal.pone.0266415
|
| 30 |
陈龙. 基于微生物一次掺入-拌合加固赤泥的试验与研究 [D]. 南京: 南京林业大学, 2023. CHEN Long. Experimental study and research on reinforcement of red mud based on microbial single incorporation-mixing [D]. Nanjing: Nanjing Forestry University, 2023.
|
| 31 |
LI Y, WEN K J, LI L, et al Experimental investigation on compression resistance of bio-bricks[J]. Construction and Building Materials, 2020, 265: 120751- 120757
doi: 10.1016/j.conbuildmat.2020.120751
|
| 32 |
DHAMI N K, REDDY M S, MUKHERJEE A Improvement in strength properties of ash bricks by bacterial calcite[J]. Ecological Engineering, 2012, 39: 31- 35
doi: 10.1016/j.ecoleng.2011.11.011
|
| 33 |
马锋玲, 李文培, 徐耀, 等 微生物矿化修复混凝土表面缺陷的现场试验[J]. 中国水利水电科学研究院学报(中英文), 2022, 20 (5): 411- 421 MA Fengling, LI Wenpei, XU Yao, et al Field experiment of repairing concrete surface defects by microbial mineralization[J]. Journal of China Institute of Water Resources and Hydropower Research, 2022, 20 (5): 411- 421
|
| 34 |
李津达. 微生物诱导碳酸钙沉淀在裂隙岩体加固中的应用 [D]. 合肥: 合肥工业大学, 2019. LI Jinda. Application of microbial induced calcium carbonate precipitation in the reinforcement of fractured rock mass [D]. Hefei: Hefei University of Technology, 2019.
|
| 35 |
SALEEM B, HUSSAIN A, KHATTAK A, et al Performance evaluation of bacterial self-healing rigid pavement by incorporating recycled brick aggregate[J]. Cement and Concrete Composites, 2021, 117: 103914
doi: 10.1016/j.cemconcomp.2020.103914
|
| 36 |
FAN L, ZHENG J, PENG S, et al Experimental investigation on the influence of crack width of asphalt concrete on the repair effect of microbially induced calcite precipitation[J]. Materials, 2023, 16 (9): 3576
doi: 10.3390/ma16093576
|
| 37 |
ZHANG M, ZHANG Y, ZHANG R, et al Effect of MICP-recycled GFRP fiber on the self-repairing properties of concrete[J]. Journal of Building Engineering, 2024, 96: 110513
doi: 10.1016/j.jobe.2024.110513
|
| 38 |
徐晶, 王彬彬 陶粒负载微生物的混凝土开裂自修复研究[J]. 材料导报, 2017, 31 (14): 127- 131 XU Jing, WANG Binbin Research on self-healing of concrete cracks by ceramsite immobilized microorganism[J]. Materials Reports, 2017, 31 (14): 127- 131
|
| 39 |
HU K, RONG H, SHI Y, et al Microbial repair materials based on sodium alginate modification for mortar crack repair[J]. Magazine of Concrete Research, 2023, 75 (12): 638- 648
doi: 10.1680/jmacr.22.00237
|
| 40 |
SHAHEEN N, KHUSHNOOD A R, KHALIQ W, et al Synthesis and characterization of bio-immobilized nano/micro inert and reactive additives for feasibility investigation in self-healing concrete[J]. Construction and Building Materials, 2019, 226: 492- 506
doi: 10.1016/j.conbuildmat.2019.07.202
|
| 41 |
王金旭. MICP自修复再生混凝土裂缝修复及力学性能试验研究 [D]. 包头: 内蒙古科技大学, 2023. WANG Jinxu. Experimental study on crack repair and mechanical properties of MICP self-healing recycled concrete [D]. Baotou: Inner Mongolia University of Science and Technology, 2023.
|
| 42 |
ACHAL V, PAN X, ÖZYURT N Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation[J]. Ecological Engineering, 2011, 37 (4): 554- 559
doi: 10.1016/j.ecoleng.2010.11.009
|
| 43 |
刘仲洋, 王山, 赵飞, 等 适于挤出型3D打印的微生物矿化纤维微筋混凝土制备与性能研究[J]. 混凝土, 2023, (12): 237- 242 LIU Zhongyang, WANG Shan, ZHAO Fei, et al Preparation and performance study of microbial mineralized fiber micro-reinforced concrete suitable for extrusion-type 3D printing[J]. Concrete, 2023, (12): 237- 242
|
| 44 |
YANG Z, CHENG X A performance study of high-strength microbial mortar produced by low pressure grouting for the reinforcement of deteriorated masonry structures[J]. Construction and Building Materials, 2013, 41: 505- 515
doi: 10.1016/j.conbuildmat.2012.12.055
|
| 45 |
戴煜伦, 谢春燕, 符超, 等 不同载体载入微生物对混凝土修复性能的影响研究[J]. 西南师范大学学报: 自然科学版, 2021, 46 (12): 95- 100 DAI Yulun, XIE Chunyan, FU Chao, et al On influence of microorganism loaded with different carriers on concrete repair performance[J]. Journal of Southwest China Normal University: Natural Science Edition, 2021, 46 (12): 95- 100
|
| 46 |
WANG J, VAN TITTELBOOM K, DE BELIE N, et al Use of silica gel or polyurethane immobilized bacteria for self-healing concrete[J]. Construction and Building Materials, 2011, 26 (1): 532- 540
|
| 47 |
杨华, 刘琼 天然文石-方解石的高温相变及热膨胀性质[J]. 岩石矿物学杂志, 2021, 40 (1): 142- 152 YANG Hua, LIU Qiong High-temperature phase transition and thermal expansivity of natural aragonite-calcite[J]. Acta Petrologica et Mineralogica, 2021, 40 (1): 142- 152
|
| 48 |
于雯, 李雄耀, 王世杰 月球探测中月面热环境影响的研究现状[J]. 地球科学进展, 2012, 27 (12): 1337- 1343 YU Wen, LI Xiongyao, WANG Shijie Effect of thermal environment on lunar exploration: a review[J]. Advances in Earth Science, 2012, 27 (12): 1337- 1343
|
| 49 |
王赤, 李磊, 张爱兵, 等 月表太阳风和粒子辐射环境: “嫦娥四号” 观测新结果[J]. 深空探测学报(中英文), 2022, 9 (3): 239- 249 WANG Chi, LI Lei, ZHANG Aibing, et al The solar wind and particle radiation environment on the surface of the moon: new observations from Chang’E-4[J]. Journal of Deep Space Exploration, 2022, 9 (3): 239- 249
|
| 50 |
HASSLER M D, ZEITLIN C, WIMMER-SCHWEINGRUBER F R, et al Mars’ surface radiation environment measured with the Mars science laboratory’s curiosity rover[J]. Science, 2014, 343 (6169): 1244797
doi: 10.1126/science.1244797
|
| 51 |
杨枭, 张志忍, 汪铁林, 等 微重力条件对小球藻固碳能力与油脂积累的影响[J]. 可再生能源, 2020, 38 (6): 725- 731 YANG Xiao, ZHANG Zhiren, WANG Tielin, et al The effect of microgravity conditions on CO2 fixation and lipid production of Chlorella pyrenoidosa[J]. Renewable Energy Resources, 2020, 38 (6): 725- 731
|
| 52 |
张志忍, 王成成, 王为国, 等 模拟微重力环境及普通环境下小球藻的培养[J]. 武汉工程大学学报, 2016, 38 (6): 521- 526 ZHANG Zhiren, WANG Chengcheng, WANG Weiguo, et al Culture of chlorella sp. in simulated microgravity and general conditions[J]. Journal of Wuhan Institute of Technology, 2016, 38 (6): 521- 526
|
| 53 |
DE VERA J P, ALAWI M, BACKHAUS T, et al Limits of life and the habitability of Mars: the ESA space experiment BIOMEX on the ISS[J]. Astrobiology, 2019, 19 (2): 145- 157
doi: 10.1089/ast.2018.1897
|
| 54 |
NIEDERWIESER T, KOCIOLEK P, KLAUS D A review of algal research in space[J]. Acta Astronautica, 2018, 146: 359- 367
doi: 10.1016/j.actaastro.2018.03.026
|
| 55 |
谢和平, 张国庆, 李存宝 月球恒温层地下空间利用探索构想[J]. 工程科学与技术, 2020, (1): 1- 8 XIE Heping, ZHANG Guoqing, LI Cunbao Scheme of underground space utilization of lunar thermostatic layer[J]. Advanced Engineering Sciences, 2020, (1): 1- 8
|
| 56 |
史金权, 付贵永, 刘汉龙, 等 微生物加固模拟月壤强度特性试验研究[J]. 土木与环境工程学报(中英文), 2025, 47 (2): 20- 29 SHI Jinquan, FU Guiyong, LIU Hanlong, et al Strength of lunar regolith simulant reinforced by MICP[J]. Journal of Civil and Environmental Engineering, 2025, 47 (2): 20- 29
|
| 57 |
CASTELEIN S M, AARTS T F, SCHLEPPI J, et al Iron can be microbially extracted from Lunar and Martian regolith simulants and 3D printed into tough structural materials[J]. PLoS One, 2021, 16 (4): e0249962
doi: 10.1371/journal.pone.0249962
|
| 58 |
中国工程建设标准化协会. 微生物自修复混凝土应用技术规程: T/CECS 973—2021 [S]. 北京: 中国计划出版社, 2021.
|
| 59 |
刘汉龙, 韩绍康, 陈卉丽, 等 潮湿环境砂岩质石窟岩体微生物加固补配修复方法[J]. 土木与环境工程学报(中英文), 2022, 44 (6): 219- 220 LIU Hanlong, HAN Shaokang, CHEN Huili, et al Microbial reinforcement and repair method of sandstone grottoes in humid environment[J]. Journal of Civil and Environmental Engineering, 2022, 44 (6): 219- 220
|
| 60 |
Concrete needs to lose its colossal carbon footprint [J]. Nature, 2021, 597(7878): 593–594.
|
| 61 |
廖赞, 张景辉, 张生银, 等 碳中和背景下微藻生物固碳技术探究[J]. 工业微生物, 2024, 54 (3): 65- 67 LIAO Zan, ZHANG Jinghui, ZHANG Shengyin, et al An investigation of microalgae biological carbon sequestration technology in the context of carbon neutrality[J]. Industrial Microbiology, 2024, 54 (3): 65- 67
|
| 62 |
龙成凤, 张达娟, 王泽斌, 等 三种微藻对不同氮源去除率及CO2固定效率的研究[J]. 天津农学院学报, 2023, 30 (5): 34- 39 LONG Chengfeng, ZHANG Dajuan, WANG Zebin, et al Study on the removal rate of different nitrogen sources and CO2 fixation efficiency of three microalgae[J]. Journal of Tianjin Agricultural University, 2023, 30 (5): 34- 39
|
| 63 |
龙菲平, 迟庆雷 微藻生物固碳技术研究和应用情况[J]. 智能建筑与智慧城市, 2022, (4): 126- 129 LONG Feiping, CHI Qinglei Research and application of microalgae-based bio-carbon sequestration technology[J]. Intelligent Building and Smart City, 2022, (4): 126- 129
|
| 64 |
WANG B, LI Y Q, WU N, et al CO2 bio-mitigation using microalgae[J]. Applied Microbiology and Biotechnology, 2008, 79 (5): 707- 718
doi: 10.1007/s00253-008-1518-y
|
| 65 |
胡其志, 刘彻德, 庄心善 反硝化微生物固化砂土的试验研究[J]. 湖北工业大学学报, 2021, 36 (4): 46- 51 HU Qizhi, LIU Chede, ZHUANG Xinshan Experimental study on denitrifying bacteria solidified sand[J]. Journal of Hubei University of Technology, 2021, 36 (4): 46- 51
|
| 66 |
魏红俊, 闫洪生, 朱亚光, 等 嗜碱芽孢杆菌H4对再生骨料性能的改性研究[J]. 混凝土, 2023, (5): 65- 71 WEI Hongjun, YAN Hongsheng, ZHU Yaguang, et al Modification of regenerated aggregate by bacillus basophilus H4[J]. Concrete, 2023, (5): 65- 71
|
| 67 |
SAHOO K K, SATHYAN K A, KUMARI C, et al Investigation of cement mortar incorporating Bacillus sphaericus[J]. International Journal of Smart and Nano Materials, 2016, 7 (2): 91- 105
doi: 10.1080/19475411.2016.1205157
|
| 68 |
YIN J Study on the wind erosion resistance of desert soil induced by bacillus megaterium[J]. Journal of Architectural Research and Development, 2024, 8 (6): 63- 69
doi: 10.26689/jard.v8i6.8954
|
| 69 |
张茜, 叶为民, 刘樟荣, 等 基于生物诱导碳酸钙沉淀的土体固化研究进展[J]. 岩土力学, 2022, 43 (2): 345- 357 ZHANG Qian, YE Weimin, LIU Zhangrong, et al Advances in soil cementation by biologically induced calcium carbonate precipitation[J]. Rock and Soil Mechanics, 2022, 43 (2): 345- 357
|
| 70 |
耿闻继. 巴氏芽孢八叠球菌的矿化性能研究及其在混凝土微裂缝修复中的应用 [D]. 天津: 天津科技大学, 2023. GENG Wenji. Study on mineralization performance of sporosarcina pasteurii and its application in micro-crack repair of concrete [D]. Tianjin: Tianjin University of Science and Technology, 2023.
|
| 71 |
UCL BUSINESS LTD. Engineered living materials: EP22783551.9 [P]. 2024-07-24.
|
| 72 |
OLENA R, STEPHANIE I, MATTHIAS A, et al 3D bioprinting of mineralizing cyanobacteria as novel approach for the fabrication of living building materials[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1145177
doi: 10.3389/fbioe.2023.1145177
|
| 73 |
张一佳, 严德强, 曲晶, 等 微生物诱导碳酸钙沉积(MICP)固化土体研究进展[J]. 土木工程, 2024, 13 (5): 603- 612 ZHANG Yijia, YAN Deqiang, QU Jing, et al Research progress on soil solidification by microbial-induced calcium carbonate deposition (MICP)[J]. Hans Journal of Civil Engineering, 2024, 13 (5): 603- 612
doi: 10.12677/hjce.2024.135065
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|