Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (8): 1746-1754    DOI: 10.3785/j.issn.1008-973X.2025.08.022
土木工程、交通工程     
海水环境下MICP加固海砂耐候性试验研究
林文彬1,2(),刘先锋1,2,高玉朋1,2,曹生根1,2,陈祥航1,2,程晓辉3,*()
1. 福建理工大学 福建省土木工程新技术与信息化重点实验室,福建 福州 350118
2. 福建理工大学 地球科学与工程研究所,福建 福州 350118
3. 清华大学 土木工程系,北京 100084
Experimental study on weatherability of MICP-reinforced sea sand under seawater environment
Wenbin LIN1,2(),Xianfeng LIU1,2,Yupeng GAO1,2,Shenggen CAO1,2,Xianghang CHEN1,2,Xiaohui CHENG3,*()
1. Fujian Provincial Key Laboratory of Advanced Technology and Informatization in Civil Engineering, Fujian University of Technology, Fuzhou 350118, China
2. Institute of Earth Sciences and Engineering, Fujian University of Technology, Fuzhou 350118, China
3. Department of Civil Engineering, Tsinghua University, Beijing 100084, China
 全文: PDF(3951 KB)   HTML
摘要:

为了探究微生物诱导碳酸钙沉淀(MICP)技术加固硅质海砂的耐候性能,对海水和淡水环境下加固后的试样进行干湿循环和酸溶液浸泡试验,测试了试样的表观变化、质量损失率和无侧限抗压强度(UCS),通过扫描电镜和X射线衍射分析试样劣化的内在机理. 结果表明,海水试样的抗干湿循环能力更强,60次干湿循环后,海水和淡水试样的质量损失率分别为3.60%和11.94%,UCS剩余率分别为38.44%和24.69%. 淡水试样的耐酸性能强于海水试样,60天不同pH酸溶液浸泡后,淡水和海水试样的质量损失率分别为0.44%~3.46%和0.51%~6.90%,UCS剩余率分别为51.22%~92.14%和26.47%~87.36%. 干湿循环没有改变试样内部碳酸钙晶体的形貌,试样强度的损失取决于砂颗粒间的胶结程度. 海水中的复杂离子促进了碳酸钙的均匀分布,使得海水试样具有更好的抗干湿循环性能. 酸溶液浸泡导致不同程度的碳酸钙晶体腐蚀,并破坏砂颗粒间的胶结作用. 淡水试样的碳酸钙生成质量相对更高,因此抵抗酸腐蚀能力更强.

关键词: 微生物诱导碳酸钙沉淀天然海水海砂干湿循环酸溶液腐蚀    
Abstract:

Specimens treated in both seawater and freshwater environments were subjected to wet-dry cycling and acid solution immersion tests in order to analyze the weathering resistance of silica sea sand reinforced using microbially induced calcium carbonate precipitation (MICP). Apparent changes, mass-loss rate and unconfined compressive strength (UCS) were measured. The intrinsic mechanism of specimen deterioration was analyzed through scanning electron microscope and X-ray diffraction. Results showed that seawater specimens exhibited better resistance to dry-wet cycles than freshwater specimens, with mass-loss rates of 3.60% and 11.94% after 60 cycles, and the UCS residual ratios were 38.44% and 24.69%, respectively. Freshwater specimens demonstrated greater acid resistance than seawater specimens. The mass-loss rates of freshwater and seawater specimens were 0.44%-3.46% and 0.51%-6.90%, respectively, with UCS residual ratios being 51.22%-92.14% and 26.47%-87.36% after 60 days of immersion in acid solutions of varying pH. Dry-wet cycles did not affect the morphology of calcium carbonate crystals inside the specimens. The strength-loss was mainly due to the degree of cementation between sand particles. The complex ions in seawater promote the uniform distribution of calcium carbonate, resulting in better resistance to dry-wet cycles in seawater specimens. Immersion in acid solutions leads to varying degrees of corrosion of calcium carbonate crystals, damaging the cementation between sand particles. Since freshwater specimens contain a relatively higher mass of calcium carbonate, their ability to resist acid corrosion is stronger.

Key words: microbially induced calcite precipitation    natural seawater    sea sand    dry-wet cycle    acid solution corrosion
收稿日期: 2024-08-16 出版日期: 2025-07-28
:  TU 441  
基金资助: 福建省交通运输科技计划资助项目(YB202417);福建省科技计划资助项目(2023Y3008);大学生创新创业训练计划资助项目(S202410388061,S202410388066).
通讯作者: 程晓辉     E-mail: linwb@fjut.edu.cn;chengxh@tsinghua.edu.cn
作者简介: 林文彬(1991—),男,副教授,从事微生物岩土材料与工程的研究. orcid.org/0000-0002-0887-1420. E-mail:linwb@fjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
林文彬
刘先锋
高玉朋
曹生根
陈祥航
程晓辉

引用本文:

林文彬,刘先锋,高玉朋,曹生根,陈祥航,程晓辉. 海水环境下MICP加固海砂耐候性试验研究[J]. 浙江大学学报(工学版), 2025, 59(8): 1746-1754.

Wenbin LIN,Xianfeng LIU,Yupeng GAO,Shenggen CAO,Xianghang CHEN,Xiaohui CHENG. Experimental study on weatherability of MICP-reinforced sea sand under seawater environment. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1746-1754.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.08.022        https://www.zjujournals.com/eng/CN/Y2025/V59/I8/1746

图 1  海砂的颗粒粒径分布曲线
试验胶结液类型nt/d
干湿循环去离子水7、14、28、60
干湿循环天然海水7、14、28、60
酸溶液浸泡去离子水7、14、28、60
酸溶液浸泡天然海水7、14、28、60
表 1  不同侵蚀环境下的试验方案
图 2  干湿循环作用下试样的表观变化
图 3  不同干湿循环次数下试样的质量损失率
图 4  不同干湿循环次数下试样的UCS剩余率
图 5  不同浸泡时长和pH下试样的表观变化
图 6  不同浸泡时长和pH下试样的质量损失率
t/d试样类型$\varDelta_U $/%
pH = 3.5pH = 4.5pH = 5.5pH = 6.5
7海水试样82.0887.5393.1596.75
7淡水试样83.2290.6392.7995.36
14海水试样57.8277.1187.2794.52
14淡水试样77.9284.1391.4594.96
28海水试样42.0763.0176.8392.81
28淡水试样67.2281.4784.5092.74
60海水试样26.4742.7962.9687.36
60淡水试样51.2267.2281.4692.14
表 2  不同浸泡时长和pH下试样的UCS剩余率
图 7  干湿循环作用前、后试样的内部微观形貌
图 8  海水试样和淡水试样的内部微观形貌
图 9  不同pH值酸溶液浸泡60 d后的海水试样内部微观形貌
图 10  pH = 3.5的海水试样浸泡60 d后的EDS能谱结果
图 11  不同侵蚀作用下试样的XRD图谱
1 郑刚, 龚晓南, 谢永利, 等 地基处理技术发展综述[J]. 土木工程学报, 2012, 45 (2): 127- 146
ZHENG Gang, GONG Xiaonan, XIE Yongli, et al State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 2012, 45 (2): 127- 146
2 刘汉龙, 赵明华 地基处理研究进展[J]. 土木工程学报, 2016, 49 (1): 96- 115
LIU Hanlong, ZHAO Minghua Review of ground improvement technical and its application in China[J]. China Civil Engineering Journal, 2016, 49 (1): 96- 115
3 程晓辉, 麻强, 杨钻, 等 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35 (8): 1486- 1495
CHENG Xiaohui, MA Qiang, YANG Zuan, et al Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (8): 1486- 1495
4 谢约翰, 唐朝生, 刘博, 等 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良[J]. 浙江大学学报: 工学版, 2019, 53 (8): 1438- 1447
XIE Yuehan, TANG Chaosheng, LIU Bo, et al Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (8): 1438- 1447
5 林文彬, 程晓辉, 由爽, 等 微生物注浆加固沙漠风积砂试验研究[J]. 工程力学, 2023, 41: 1- 13
LIN Wenbin, CHENG Xiaohui, YOU Shuang, et al Experimental study on reinforcement of desert aeolian sand by MICP technology[J]. Engineering Mechanics, 2023, 41: 1- 13
doi: 10.6052/j.issn.1000-4750.2022.02.0156
6 徐晶 基于微生物矿化沉积的混凝土裂缝修复研究进展[J]. 浙江大学学报: 工学版, 2012, 46 (11): 89- 96
XU Jing Research progress of concrete crack remediation based on microbially mineral precipitation[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (11): 89- 96
7 FAN Q, FAN L, QUANCH W M, et al The impact of seawater ions on urea decomposition and calcium carbonate precipitation in the MICP process[J]. Cement and Concrete Composites, 2024, 152: 105631
doi: 10.1016/j.cemconcomp.2024.105631
8 武发思, 张永, 苏敏, 等 生物技术在文物保护修复中的应用研究进展[J]. 文物保护与考古科学, 2022, 34 (1): 133- 143
WU Fasi, ZHANG Yong, SU Min, et al Advancement of biotechnology for the conservation and restoration of cultural heritage objects[J]. Sciences of Conservation and Archaeology, 2022, 34 (1): 133- 143
9 裴迪, 刘志明, 胡碧茹, 等 巴氏芽孢杆菌矿化作用机理及应用研究进展[J]. 生物化学与生物物理进展, 2020, 47 (6): 467- 482
PEI Di, LIU Zhiming, HU Biru, et al Progress on mineralization mechanism and application research of Sporosarcina pasteurii[J]. Progress in Biochemistry and Biophysics, 2020, 47 (6): 467- 482
10 CHENG L, SHAHIN M A, CORD-RUWISCH R Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments[J]. Géotechnique, 2014, 64 (12): 1010- 1013
11 WANG Z Y, CHEN W J, TONG Z Y, et al Research on the effect of natural seawater in domesticating Bacillus pasteurii and reinforcing calcareous sand[J]. Journal of Marine Science and Engineering, 2024, 12 (4): 542
doi: 10.3390/jmse12040542
12 肖瑶, 邓华锋, 李建林, 等 海水环境下巴氏芽孢杆菌驯化及钙质砂固化效果研究[J]. 岩土力学, 2022, 43 (2): 395- 404
XIAO Yao, DENG Huafeng, LI Jianlin, et al Study on the domestication of Sporosarcina pasteurii and strengthening effect of calcareous sand in seawater environment[J]. Rock and Soil Mechanics, 2022, 43 (2): 395- 404
13 XIAO R, LIANG B Y, WU F, et al Biocementation of coral sand under seawater environment and an improved three-stage biogrouting approach[J]. Construction and Building Materials, 2023, 362: 129758
doi: 10.1016/j.conbuildmat.2022.129758
14 WANG Z Y, ZHAO X Y, CHEN X, et al Mechanical properties and constitutive model of calcareous sand strengthened by MICP[J]. Journal of Marine Science and Engineering, 2023, 11 (4): 819
doi: 10.3390/jmse11040819
15 彭劼, 田艳梅, 杨建贵 海水环境下MICP加固珊瑚砂试验[J]. 水利水电科技进展, 2019, 39 (1): 58- 62
PENG Jie, TIAN Yanmei, YANG Jiangui Experiments of coral sand reinforcement using MICP in seawater environment[J]. Advances in Science and Technology of Water Resources, 2019, 39 (1): 58- 62
16 LIN W B, GAO Y P, LIN W, et al Seawater-based bio-cementation of natural sea sand via microbially induced carbonate precipitation[J]. Environmental Technology and Innovation, 2023, 29: 103010
doi: 10.1016/j.eti.2023.103010
17 董博文, 刘士雨, 俞缙, 等 基于微生物诱导碳酸钙沉淀的天然海水加固钙质砂效果评价[J]. 岩土力学, 2021, 42 (4): 1104- 1114
DONG Bowen, LIU Shiyu, YU Jin, et al Evaluation of the effect of natural seawater strengthening calcareous sand based on MICP[J]. Rock and Soil Mechanics, 2021, 42 (4): 1104- 1114
18 王子玉, 喻文晔, 齐超楠, 等 海水环境下MICP的反应机理与影响因素[J]. 土木与环境工程学报(中英文), 2022, 44 (5): 128- 135
WANG Ziyu, YU Wenye, QI Chaonan, et al Reaction mechanism and influencing factors of MICP in seawater environment[J]. Journal of Civil and Environmental Engineering, 2022, 44 (5): 128- 135
19 LI S L, QU Q, LI L, et al Bacillus cereus s-EPS as a dual bio-functional corrosion and scale inhibitor in artificial seawater[J]. Water Research, 2019, 166: 115094
doi: 10.1016/j.watres.2019.115094
20 PENG J, CAO T C, HE J, et al Improvement of coral sand with MICP using various calcium sources in sea water environment[J]. Frontiers in Physics, 2022, (10): 82
21 LIU S Y, DONG B W, YU J, et al Effect of different mineralization modes on strengthening calcareous sand under simulated seawater conditions[J]. Sustainability, 2021, 13 (15): 8265
doi: 10.3390/su13158265
22 杨司盟, 彭劼, 温智力, 等 浓缩海水作为钙源在微生物诱导碳酸钙加固砂土中的应用[J]. 岩土力学, 2021, 42 (3): 746- 754
YANG Simeng, PENG Jie, WEN Zhili, et al Application of concentrated seawater as calcium source solution in sand reinforcement using MICP[J]. Rock and Soil Mechanics, 2021, 42 (3): 746- 754
23 刘家明, 童华炜, 赵寄橦, 等 盐溶液环境下微生物固化技术加固钙质砂的试验研究[J]. 科学技术与工程, 2021, 21 (12): 5046- 5053
LIU Jiaming, TONG Huawei, ZHAO Jitong, et al Experimental study of microbial curing technology for reinforcing calcareous sand under salt solution environment[J]. Science Technology and Engineering, 2021, 21 (12): 5046- 5053
doi: 10.3969/j.issn.1671-1815.2021.12.043
24 ZHAO J T, SHAN Y, TONG H W, et al Study on calcareous sand treated by MICP in different NaCl concentrations[J]. European Journal of Environmental and Civil Engineering, 2023, 27 (10): 3137- 3156
doi: 10.1080/19648189.2022.2130439
25 滕秀英, 王子玉, 贾永刚, 等 天然海水环境下离子浓度对MICP反应的影响[J]. 土木与环境工程学报(中英文), 2024, 46 (5): 47- 56
TENG Xiuying, WANG Ziyu, JIA Yonggang, et al Effect of ion concentration on MICP reaction in natural seawater environment[J]. Journal of Civil and Environmental Engineering, 2024, 46 (5): 47- 56
26 XU X C, GUO H X, CHENG X H, et al The promotion of magnesium ions on aragonite precipitation in MICP process[J]. Construction and Building Materials, 2020, 263: 120057
doi: 10.1016/j.conbuildmat.2020.120057
27 李艺隆, 国振, 徐强, 等 海水环境下MICP胶结钙质砂干湿循环试验研究[J]. 浙江大学学报: 工学版, 2022, 56 (9): 1740- 1749
LI Yilong, GUO Zhen, XU Qiang, et al Experimental research on wet-dry cycle of MICP cemented calcareous sand in seawater environment[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (9): 1740- 1749
28 金伟良, 赵羽习. 混凝土结构耐久性研究的回顾与展望[J]. 浙江大学学报: 工学版, 2022, 36(4): 371-380.
JIN Weiliang, ZHAO Yuxi. State-of-the-art on durability of concrete structures [J]. Journal of Zhejiang University: Engineering Science, 2002, 36(4): 371-380.
29 王鹏翱. 盐碱环境下红砂岩风化土的微生物矿化试验研究[D]. 呼和浩特: 内蒙古工业大学, 2021.
WANG Peng’ao. Experimental study on microbial mineralization of red sandstone weathered soil in saline-alkali environment [D]. Hohhot: Inner Mongolia University of Technology, 2021.
30 秦骁. 微生物诱导矿化材料耐候性能试验研究[D]. 呼和浩特: 内蒙古工业大学, 2017.
QIN Xiao. Experimental research on the weatherability resistance of new material based on MICP [D]. Hohhot: Inner Mongolia University of Technology, 2017.
31 IMRAN M A, NAKASHIMA K, EVELPIDOU N, et al Durability improvement of biocemented sand by fiber-reinforced MICP for coastal erosion protection[J]. Materials, 2022, 15 (7): 2389
doi: 10.3390/ma15072389
32 汤佳辉, 彭劼, 许鹏旭, 等 MICP加固钙质砂的耐久性试验研究[J]. 河北工程大学学报: 自然科学版, 2023, 40 (1): 29- 34
TANG Jiahui, PENG Jie, XU Pengxu, et al Experimental study on durability of MICP-solidified calcareous sand[J]. Journal of Hebei University of Engineering: Natural Science Edition, 2023, 40 (1): 29- 34
33 王燕星, 李驰, 高利平, 等 低磁场核磁共振测定盐环境下微生物诱导碳酸钙沉积固化材料的孔隙结构[J]. 工业建筑, 2020, 50 (12): 1- 7
WANG Yanxing, LI Chi, GAO Liping, et al Determination on pore structure of microbial induced mineralization materials in salt environment by NMR[J]. Industrial Construction, 2020, 50 (12): 1- 7
34 CHENG L, CORD-RUWISCH R, SHAHIN M A Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation[J]. Canadian Geotechnical Journal, 2013, 50 (1): 81- 90
doi: 10.1139/cgj-2012-0023
35 LI C, WANG Y X, ZHOU T J, et al Sulfate acid corrosion mechanism of biogeomaterial based on MICP technology[J]. Journal of Materials in Civil Engineering, 2019, 31 (7): 04019097.1- 04019097.11
36 GOWTHAMAN S, NAKASHIMA K, KAWASAKI S Durability analysis of bio-cemented slope soil under the exposure of acid rain[J]. Journal of Soils and Sediments, 2021, 21: 2831- 2844
doi: 10.1007/s11368-021-02997-w
37 LI M, CHENG X H, GUO H X, et al Enhancement of the yield and strength of microbially-induced carbonate precipitation by optimum cultivation and grouting measures for civil engineering applications[J]. Journal of Pure and Applied Microbiology, 2013, 7 (Supple.): 631- 638
38 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082-2009[S]. 北京: 中国建筑工业出版社, 2009.
39 中华人民共和国住房和城乡建设部. 混凝土结构耐久性设计标准: GB/T 50476-2019[S]. 北京: 中国建筑工业出版社, 2019.
40 吴晓萍. 芽孢杆菌沉淀碳酸钙的影响因素[D]. 武汉: 中国地质大学, 2013.
WU Xiaoping. The factors influencing calcium carbonate precipitation induced by Bacillus sp. [D]. Wuhan: China University of Geosciences, 2013.
41 PINGITORE J N E, MEITZNER G, LOVE K M Identification of sulfate in natural carbonates by X-ray absorption spectroscopy[J]. Geochimica et Cosmochimica Acta, 1995, 59 (12): 2477- 2483
doi: 10.1016/0016-7037(95)00142-5
[1] 成辉,付宏渊,曾铃,于晓伟,罗锦涛,刘杰. 考虑干湿循环路径的粉砂质泥岩力学特性及本构模型[J]. 浙江大学学报(工学版), 2024, 58(9): 1912-1922.
[2] 李艺隆,国振,徐强,李雨杰. 海水环境下MICP胶结钙质砂干湿循环试验研究[J]. 浙江大学学报(工学版), 2022, 56(9): 1740-1749.
[3] 王海龙,董宜森,孙晓燕, 金伟良. 干湿交替环境下混凝土受硫酸盐侵蚀劣化机理[J]. J4, 2012, 46(7): 1255-1261.
[4] 董宜森,王海龙,金伟良. 硫酸盐侵蚀环境下混凝土双K断裂参数试验研究[J]. J4, 2012, 46(1): 58-63.
[5] 卢振永, 金伟良, 王海龙, 等. 人工气候模拟加速试验的相似性设计[J]. J4, 2009, 43(6): 1071-1076.