Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (9): 1912-1922    DOI: 10.3785/j.issn.1008-973X.2024.09.016
土木与建筑工程     
考虑干湿循环路径的粉砂质泥岩力学特性及本构模型
成辉1(),付宏渊1,曾铃1,于晓伟1,罗锦涛1,刘杰2,*()
1. 长沙理工大学 土木工程学院,湖南 长沙 410114
2. 长沙理工大学 水利与环境工程学院,湖南 长沙 410114
Mechanical properties and constitutive model of silty mudstone considering drying-wetting cycle path
Hui CHENG1(),Hongyuan FU1,Ling ZENG1,Xiaowei YU1,Jintao LUO1,Jie LIU2,*()
1. School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China
2. School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China
 全文: PDF(3045 KB)   HTML
摘要:

为了分析南方湿热地区粉砂质泥岩边坡浅层失稳机制,开展不同干湿循环路径下的粉砂质泥岩低围压三轴压缩试验与扫描电镜(SEM)试验. 基于连续损伤理论和修正Drucker-Prager (D-P)强度准则,构建可考虑干湿循环路径影响的粉砂质泥岩损伤本构模型. 结果表明:粉砂质泥岩应力-应变曲线具有非线性特征,可分为压密阶段、弹性阶段、塑性屈服阶段、峰后破坏阶段和残余强度阶段;随干湿循环次数或循环幅度的增加,压密阶段与塑性屈服阶段延长,岩样峰值强度、变形模量、黏聚力和内摩擦角损伤逐渐增大,粉砂质泥岩力学参数敏感度表现为变形模量>黏聚力>内摩擦角>峰值强度;受溶蚀、潜蚀作用,粉砂质泥岩孔隙率不断增大,破坏模式由以剪切破坏形式为主的顶锥-劈裂破坏向剪切破坏演化. 构建的岩石损伤本构模型能考虑干湿循环路径的影响,能较好地反映粉砂质泥岩应力-应变曲线全过程变形特征.

关键词: 粉砂质泥岩干湿循环路径力学特性微观结构损伤本构模型    
Abstract:

Low confining pressure triaxial compression tests and scanning electron microscopy (SEM) on silty mudstone were carried out under different drying-wetting cycle paths, respectively, in order to analyze the shallow instability mechanism of silty mudstone slopes in the hot and humid regions of southern China. A damage constitutive model for silty mudstone considering the influence of drying-wetting cycle paths was established based on the continuum damage mechanical theory and the modified Drucker-Prager (D-P) strength criterion. Results showed that the stress-strain curves of silty mudstone manifested non-linear characteristics, and could be divided into the compaction stage, elastic stage, plastic yield stage, post-peak failure stage, and residual strength stage. The compaction stage and the plastic yield stage were prolonged, and the peak strength, deformation modulus, cohesion and internal friction angle damage of silty mudstone gradually increased, with the increase in drying-wetting cycle times or drying-wetting cycle amplitudes. The sensitivity of the mechanical parameters of silty mudstone was as follows: deformation modulus>cohesion>internal friction angle>peak strength. The porosity of silty mudstone kept growing gradually due to erosion and dissolution. The failure mode of silty mudstone specimen evolved from cone-splitting failure, mainly in the form of shear failure, to shear failure. The constructed rock damage constitutive model can consider the influence of drying-wetting cycle paths and reflect the deformation characteristics of the full stress-strain curve of the silty mudstone.

Key words: silty mudstone    drying-wetting cycle path    mechanical property    microstructure    damage constitutive model
收稿日期: 2023-07-08 出版日期: 2024-08-30
CLC:  TU 45  
基金资助: 国家自然科学基金资助项目(52108397,52078067,52078066);湖南省自然科学基金资助项目(2022JJ40485);长沙理工大学专业学位研究生“实践创新与创业能力提升计划”资助项目(CLSJCX22037);湖南省水利科技资助项目(XSKJ2022068-26,XSKJ2023059-41).
通讯作者: 刘杰     E-mail: 2674764965@qq.com;qzclliujie@stu.csust.edu.cn
作者简介: 成辉(1997—),男,硕士生,从事软岩边坡稳定性研究. orcid.org/0009-0006-2379-7018. E-mail:2674764965@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
成辉
付宏渊
曾铃
于晓伟
罗锦涛
刘杰

引用本文:

成辉,付宏渊,曾铃,于晓伟,罗锦涛,刘杰. 考虑干湿循环路径的粉砂质泥岩力学特性及本构模型[J]. 浙江大学学报(工学版), 2024, 58(9): 1912-1922.

Hui CHENG,Hongyuan FU,Ling ZENG,Xiaowei YU,Jintao LUO,Jie LIU. Mechanical properties and constitutive model of silty mudstone considering drying-wetting cycle path. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1912-1922.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.09.016        https://www.zjujournals.com/eng/CN/Y2024/V58/I9/1912

物理力学指标取值
颗粒密度/(g·cm?3)2.73
毛体积干密度/( g·cm?3)2.30
孔隙率/%15.80
水的质量分数/%11.78
吸水率/%14.34
饱和吸水率/%15.10
抗压强度/MPa18.02
变形模量/GPa35.35
黏聚力/MPa9.50
内摩擦角/(°)6.91
表 1  粉砂质泥岩物理力学性能
图 1  粉砂质泥岩纵波波速分布
图 2  干湿循环路径
图 3  不同干湿循环路径下的粉砂质泥岩试验流程图
图 4  不同干湿循环路径下粉砂质泥岩应力-应变曲线
图 5  不同干湿循环路径下粉砂质泥岩峰值强度与变形模量
图 6  不同干湿循环路径下粉砂质泥岩抗剪强度指标
图 7  不同干湿循环路径下粉砂质泥岩破坏形态
图 8  不同干湿循环路径下粉砂质泥岩微观结构图
$ {\sigma _3} $/kPaw/%nm0r0$ {\sigma _3} $/kPaw/%nm0r0
1000.01662.3883301050.01332.7119
3000.19043.13413010100.02642.6889
9000.10123.37573010200.02242.5899
10550.15282.6359901050.03593.1221
105100.01652.25539010100.02862.9375
105200.05112.18809010200.14543.0475
30550.04102.8725101550.02152.3597
305100.22053.11561015100.04732.2364
305200.06112.75841015200.01761.9490
90550.22723.5124301550.01762.7627
905100.17053.35363015100.06242.7566
905200.09603.18283015200.11742.6693
101050.10952.4711901550.10563.2852
1010100.02252.28759015100.06743.1364
1010200.20692.38509015200.05742.8579
表 2  不同干湿循环路径作用下粉砂质泥岩损伤模型参数
图 9  不同干湿循环路径下粉砂质泥岩试验曲线和理论曲线
1 YANG X, WANG J, HOU D, et al Effect of dry-wet cycling on the mechanical properties of rocks: a laboratory-scale experimental study[J]. Processes, 2018, 6 (10): 199
doi: 10.3390/pr6100199
2 SUN Q, ZHANG Y L Combined effects of salt, cyclic wetting and drying cycles on the physical and mechanical properties of sandstone[J]. Engineering Geology, 2019, 248: 70- 79
doi: 10.1016/j.enggeo.2018.11.009
3 邓华锋, 周美玲, 李建林, 等 水–岩作用下红层软岩力学特性劣化规律研究[J]. 岩石力学与工程学报, 2016, 35 (Suppl.2): 3481- 3491
DENG Huafeng, ZHOU Meiling, LI Jianlin, et al Mechanical properties deteriorating change rule research of red-layer soft rock under water-rock interaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (Suppl.2): 3481- 3491
4 ZHANG H, LU K, ZHANG W, et al Quantification and acoustic emission characteristics of sandstone damage evolution under dry-wet cycles[J]. Journal of Building Engineering, 2022, 48: 103996
doi: 10.1016/j.jobe.2022.103996
5 MENG Y Y, JING H W, YIN Q, et al Investigation on mechanical and AE characteristics of yellow sandstone undergoing wetting-drying cycles[J]. KSCE Journal of Civil Engineering, 2019, 24 (11): 3267- 3278
6 王维, 顾峰, 何刘, 等 水岩循环作用下变质砂岩力学参数劣化试验研究[J]. 水资源与水工程学报, 2022, 33 (2): 179- 185
WANG Wei, GU Feng, HE Liu, et al Experimental study on deteriorating characteristics of metamorphic sandstone mechanical parameters under the effect of wetting-drying cycles[J]. Journal of Water Resources and Water Engineering, 2022, 33 (2): 179- 185
7 CHEN X, HE P, QIN Z Strength weakening and energy mechanism of rocks subjected to wet-dry cycles[J]. Geotechnical and Geological Engineering, 2019, 37: 3915- 3923
doi: 10.1007/s10706-019-00881-6
8 付宏渊, 蒋煌斌, 邱祥, 等 低应力与覆水环境下单裂隙粉砂质泥岩渗流特性[J]. 岩土力学, 2020, 41 (12): 3840- 3850
FU Hongyuan, JIANG Huangbin, QIU Xiang, et al Seepage characteristics of single-fractured silty mudstone under low stress and overlying water environment[J]. Rock and Soil Mechanics, 2020, 41 (12): 3840- 3850
9 曹文贵, 赵明华, 唐学军 岩石破裂过程的统计损伤模拟研究[J]. 岩土工程学报, 2003, 25 (2): 184- 187
CAO Wengui, ZHAO Minghua, TANG Xuejun Study on simulation of statistical damage in the full process of rock failure[J]. Chinese Journal of Geotechnical Engineering, 2003, 25 (2): 184- 187
10 LIN H, LIANG L, CHEN Y, et al A damage constitutive model of rock subjected to freeze-thaw cycles based on lognormal distribution[J]. Advances in Civil Engineering, 2021, (1): 6658915
11 王辉, 王伟, 朱鹏辉, 等 考虑干湿循环的大理岩统计损伤本构模型[J]. 河南科学, 2020, 38 (6): 909- 915
WANG Hui, WANG Wei, ZHU Penghui, et al Statistical damage constitutive model of marble considering dry-wet cycle[J]. Henan Science, 2020, 38 (6): 909- 915
12 KOVARI K, TISA A, EINSTEIN H H, et al. Suggested methods for determining the strength of rock materials in triaxial compression: revised version[J]. International Journal of Rock Mechanics and Mining Sciences , 1983, 20(6): 285−290 .
13 中华人民共和国行业标准编写组. 公路工程岩石试验规程: JTG 3430—2020 [S]. 武汉: 人民交通出版社, 2020.
14 RINEHART J S, FORTIN J P, BURGIN L. Propagation velocity of longitudinal waves in rocks. Effect of state of stress, stress level of the wave, water content, porosity, temperature, stratification and texture [C]// ARMA US Rock Mechanics/Geomechanics Symposium . Pennsy Ivania: University Park, 1961: ARMA-61-119.
15 ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A Yielding of clays in states wetter than critical[J]. Geotechnique, 1963, 13 (3): 211- 240
doi: 10.1680/geot.1963.13.3.211
16 FU H, JIANG H, QIU X, et al Seepage characteristics of a fractured silty mudstone under different confining pressures and temperatures[J]. Journal of Central South University, 2020, 27 (7): 1907- 1916
doi: 10.1007/s11771-020-4419-6
17 黄震, 胡钊健, 张海, 等 干湿循环下宁明粉砂岩宏微观损伤劣化规律[J]. 科学技术与工程, 2022, 22 (12): 4954- 4961
HUANG Zhen, HU Zhaojian, ZHANG Hai, et al Macro/micro damage degradation law of Ningming siltstone under dry-wet cycles[J]. Science Technology and Engineering, 2022, 22 (12): 4954- 4961
18 郝延周, 王铁行, 汪朝, 等 干湿循环作用下压实黄土三轴剪切特性试验研究[J]. 水利学报, 2021, 52 (3): 359- 368
HAO Yanzhou, WANG Tiexing, WANG Chao, et al Experimental study on triaxial shear characteristics of compacted loess under drying and wetting cycles[J]. Journal of Hydraulic Engineering, 2021, 52 (3): 359- 368
19 傅晏, 王子娟, 刘新荣, 等 干湿循环作用下砂岩细观损伤演化及宏观劣化研究[J]. 岩土工程学报, 2017, 39 (9): 1653- 1661
FU Yan, WANG Zijuan, LIU Xinrong, et al Meso damage evolution characteristics and macro degradation of sandstone under wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (9): 1653- 1661
20 王伟, 龚传根, 朱鹏辉, 等 大理岩干湿循环力学特性试验研究[J]. 水利学报, 2017, 48 (10): 1175- 1184
WANG Wei, GONG Chuangen, ZHU Penghui, et al Experimental study on mechanical properties of marble under hydraulic weathering coupling[J]. Journal of Hydraulic Engineering, 2017, 48 (10): 1175- 1184
21 李克钢, 吴勇, 郑东普 砂岩力学特性对干湿循环效应响应规律的试验研究[J]. 北京理工大学学报, 2013, 33 (10): 1010- 1014
LI Kegang, WU Yong, ZHENG Dongpu Mechanical properties response of sandstone to cyclic drying-wetting effect[J]. Transactions of Beijing Institute of Technology, 2013, 33 (10): 1010- 1014
22 黄维辉. 干湿交替作用下砂岩劣化效应研究[EB/OL]. [2023-06-01]. https://kns.cnki.net/kcms2/article/abstract?v=XEQRgWHfXDGBiurakSHKJvKgdjaRzHZm74lmNwFDjOpZLV3oTY9p_X4uGbBVf2DUhxvgQbOr7DKDE05ainOKh5hqHxqpwRzea3uGeCxnE92plum41f5BKRAPPHBWNIbSDxbFn-nj6CUwogVPw_6xqg==&uniplatform=NZKPT&language=CHS.
23 郑晓卿, 刘建, 卞康, 等 鄂西北页岩饱水软化微观机制与力学特性研究[J]. 岩土力学, 2017, 38 (7): 2022- 2028
ZHENG Xiaoqing, LIU Jian, BIAN Kang, et al Softening micro-mechanism and mechanical properties of water-saturated shale in Northwestern Hubei[J]. Rock and Soil Mechanics, 2017, 38 (7): 2022- 2028
24 CHEN X, HE P, QIN Z, et al Statistical damage model of altered granite under dry-wet cycles[J]. Symmetry, 2019, 11 (1): 41
doi: 10.3390/sym11010041
[1] 庄心善,杨本驰,陶高梁. 纳米Al2O3改良滨海水泥土的动力特性及微观机理试验研究[J]. 浙江大学学报(工学版), 2024, 58(7): 1457-1466.
[2] 苗泽锴,张大任,马刚,邹宇雄,陈远,周伟,肖宇轩. 基于X-ray CT原位三轴剪切试验的砂土颗粒材料微观动力学[J]. 浙江大学学报(工学版), 2023, 57(8): 1597-1606.
[3] 孙海超,王文军,凌道盛. 低掺量水泥固化土的力学特性及微观结构[J]. 浙江大学学报(工学版), 2021, 55(3): 530-538.
[4] 张雷,徐海军,邹腾安,徐小军,常雨康. 嵌套Z轴式水下矢量推进系统建模与特性分析[J]. 浙江大学学报(工学版), 2020, 54(3): 450-458.
[5] 余松霖,柯瀚,詹良通,孟涛,陈云敏,杨策. 工程渣土的工程特性及矿坑填埋场的工后沉降和容量分析[J]. 浙江大学学报(工学版), 2020, 54(12): 2364-2376.
[6] 闫东明,黄之昊,陈功,钱昊,邓嘉华,刘毅. 低温烧结活性瓷釉涂层钢筋耐腐蚀性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 56-63.
[7] 谢约翰,唐朝生,刘博,程青,尹黎阳,蒋宁俊,施斌. 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良[J]. 浙江大学学报(工学版), 2019, 53(8): 1438-1447.
[8] 余良贵,周建,温晓贵,徐杰,罗凌晖. 重塑高岭土渗透各向异性影响因素[J]. 浙江大学学报(工学版), 2019, 53(2): 275-283.
[9] 邵惠锋, 贺永, 傅建中. 增材制造可降解人工骨的研究进展——从外形定制到性能定制[J]. 浙江大学学报(工学版), 2018, 52(6): 1035-1057.
[10] 梅振宇, 章伟. 基于复杂性测度的泊位占有率序列动力学分析[J]. 浙江大学学报(工学版), 2018, 52(4): 727-734.
[11] 丁智, 洪其浩, 魏新江, 张孟雅, 郑勇. 地铁列车荷载下人工冻融软土微观试验研究[J]. 浙江大学学报(工学版), 2017, 51(7): 1291-1299.
[12] 王玉梅, 孙平, 冯浩杰, 刘军恒, 嵇乾. 柴油机燃用铁基FBC燃油的微粒排放特性[J]. 浙江大学学报(工学版), 2017, 51(10): 1981-1987.
[13] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[14] 杜明月, 田野, 金南国, 王宇纬, 金贤玉. 基于水泥水化的早龄期混凝土温湿耦合[J]. 浙江大学学报(工学版), 2015, 49(8): 1410-1416.
[15] 徐日庆,徐丽阳,邓祎文,朱亦弘. 基于SEM和IPP测定软黏土接触面积的试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1417-1425.