Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (2): 275-283    DOI: 10.3785/j.issn.1008-973X.2019.02.010
土木工程、交通工程     
重塑高岭土渗透各向异性影响因素
余良贵1,2(),周建1,2,*(),温晓贵1,2,徐杰1,2,罗凌晖1,2
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
2. 浙江大学 浙江省城市地下空间开发工程技术研究中心,浙江 杭州 310058
Factors influencing permeability anisotropy of remolded kaolin
Liang-gui YU1,2(),Jian ZHOU1,2,*(),Xiao-gui WEN1,2,Jie XU1,2,Ling-hui LUO1,2
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Engineering Research Center of Urban Underground Development of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1189 KB)   HTML
摘要:

为了研究软土渗透各向异性,以重塑高岭土为研究对象,利用三轴渗流仪对重塑高岭土展开一系列渗流试验,研究电解质类型、浓度及固结压力对软黏土渗透各向异性的影响,并从微观角度解释其作用机理。研究发现:1)高岭土颗粒为扁平状结构,在一维固结下颗粒趋向于垂直于主应力方向排列,重塑高岭土竖向剖面孔隙面积大于水平向剖面孔隙面积,这2个因素共同导致渗透各向异性比(水平渗透系数与垂直渗透系数之比)大于1;2)渗透各向异性比随固结压力增大而减小,主要是因为竖向剖面大孔隙较多,压力作用下竖向剖面孔隙面积减小幅度大于水平剖面孔隙面积减小幅度;3)马来西亚高岭土在高纯水下为絮凝状结构,在盐溶液下为散凝状结构,在高纯水下土体竖向剖面大孔隙较多,而在盐溶液下竖向剖面孔隙和水平向剖面孔隙较为接近,导致在高纯水下测得的渗透各向异性比在盐溶液下的测量结果大;4)在本试验条件下,电解质类型、浓度对马来西亚高岭土渗透各向异性比的影响均较小。

关键词: 渗透各向异性重塑高岭土电解质溶液固结压力微观结构    
Abstract:

A series of experiments were conducted by triaxial permeameter to analysis the permeability anisotropy of soft soil. The effects of electrolyte type, ionic molar concentration and consolidation pressure on permeability anisotropy and the corresponding microscopic mechanisms were investigated, with remolded kaolin as the research object. Results showed that under one-dimensional consolidation, kaolin particles, most having flat structure, tended to orientate perpendicularly to the direction of the major principal stress and the pore area of remolded kaolin in vertical profile was much larger than that in horizontal profile. As a result, permeability anisotropy ratio (ratio of horizontal to vertical permeability coefficients) was greater than one. Permeability anisotropy ratio decreased with the increase of consolidation pressure, of which the main reason was that the amount of large pores, which had higher compressibility, in vertical profile was larger than that in horizontal profile. Malaysia kaolin has flocculated structure if prepared in ultrapure water, while has dispersed structure in saline solution. The measured permeability anisotropy ratio in ultrapure water was larger than that in saline solution, which was the consequence of more large pores in vertical profile than that in horizontal profile in ultrapure water. The vertical and horizontal profiles had similar amounts of large pores in saline solution. Test results also revealed that the electrolyte type and ionic molar concentration had little effect on the permeability anisotropy ratio of Malaysia kaolin.

Key words: permeability anisotropy    remolded kaolin    electrolyte solution    consolidation pressure    microstructure
收稿日期: 2018-02-04 出版日期: 2019-02-21
CLC:  TU 47  
通讯作者: 周建     E-mail: 2191212859@qq.com;zjelim@zju.edu.cn
作者简介: 余良贵(1992—),男,硕士生,从事高岭土渗透性研究. orcid.org/0000-0002-3811-3962. E-mail: 2191212859@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
余良贵
周建
温晓贵
徐杰
罗凌晖

引用本文:

余良贵,周建,温晓贵,徐杰,罗凌晖. 重塑高岭土渗透各向异性影响因素[J]. 浙江大学学报(工学版), 2019, 53(2): 275-283.

Liang-gui YU,Jian ZHOU,Xiao-gui WEN,Jie XU,Ling-hui LUO. Factors influencing permeability anisotropy of remolded kaolin. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 275-283.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.02.010        http://www.zjujournals.com/eng/CN/Y2019/V53/I2/275

水平向试样 竖向试样 编号说明 液体类型 cB/(mol?L?1 p/kPa
S1HP1 S1VP1 S1代表试样1;H和V分别代表水平方向和竖直方向;P代表固结压力,P1代表100 kPa固结压力,依此类推 纯水 ? 100
S1HP2 S1VP2 200
S1HP3 S1VP3 300
S2HP1 S2VP1 S2代表试样2;试验在氯化钠溶液下开展;其余参数同上 氯化钠溶液 0.10 100
S2HP2 S2VP2 200
S2HP3 S2VP3 300
S3HP1 S3VP1 S3代表试样3;试验在氯化钾溶液下开展;其余参数同上 氯化钾溶液 0.10 100
S3HP2 S3VP2 200
S3HP3 S3VP3 300
S4HP1 S4VP1 S4代表试样4;试验在氯化钙溶液下开展;其余参数同上 氯化钙溶液 0.10 100
S4HP2 S4VP2 200
S4HP3 S4VP3 300
S5Hc0.01 S5Vc0.01 S5~S7分别代表试验在NaCl、KCl、CaCl2溶液下开展;c代表浓度;其余参数同上 氯化钠溶液 0.01 100
S6Hc0.01 S6Vc0.01 氯化钾溶液 0.01 100
S7Hc0.01 S7Vc0.01 氯化钙溶液 0.01 100
表 1  重塑高岭土渗透各向异性试验方案
t/h S1HP1 S3HP1 t/h S1HP1 S3HP1 t/h S3HP1
${\varDelta _Q}$/% kh/(10?7 cm?s?1 ${\varDelta _Q}$/% kh/(10?7 cm?s?1 ${\varDelta _Q}$/% kh(10?7 cm?s?1 ${\varDelta _Q}$/% kh(10?7 cm?s?1 ${\varDelta _Q}$/% kh/(10?7 cm?s?1
注:S1HP1的单位时间内流量差和渗透系数较为稳定,试验时间可适当缩短;而S3HP1可适当增加试验时间
1 ?0.79 22.91 ?3.42 16.87 21 1.18 21.12 0.00 13.94 41 ?1.87 13.86
2 ?0.15 21.52 ?2.64 16.49 22 0.55 21.26 ?0.75 14.15 42 ?0.34 14.21
3 ?0.15 21.39 ?5.39 16.34 23 0.74 21.24 ?1.79 14.01 43 ?0.66 14.80
4 ?0.08 21.40 ?4.14 16.21 24 ?0.70 21.08 ?2.75 14.03 44 ?0.37 15.55
5 ?0.62 21.36 ?5.60 15.86 25 ?0.35 21.13 ?2.76 14.01 45 ?0.99 15.59
6 1.29 21.27 2.13 15.87 26 0.43 21.18 ?2.74 14.12 46 ?0.88 15.71
7 ?0.27 21.51 2.91 15.92 27 0.67 21.09 ?0.11 14.29 47 ?0.16 15.43
8 ?1.26 21.48 1.29 15.95 28 ?0.04 21.14 0.34 14.38 48 ?0.96 15.27
9 ?0.74 21.28 0.93 15.93 29 ? ? ?2.37 14.29 49 ?0.27 15.25
10 ?1.40 21.05 0.36 15.87 30 ? ? ?1.21 13.81 50 ?0.44 14.84
11 ?0.12 21.16 ?0.52 15.77 31 ? ? ?4.00 13.59 51 ?1.33 14.57
12 ?0.71 20.90 ?1.34 15.67 32 ? ? 0.72 13.61 52 ?0.68 14.39
13 ?1.03 20.82 ?1.53 15.37 33 ? ? ?0.06 13.69 53 ?1.31 14.18
14 0.16 20.88 ?1.71 15.15 34 ? ? ?0.65 13.68 54 ?0.81 14.07
15 ?0.76 20.69 ?1.61 15.10 35 ? ? ?0.47 13.84 55 ?0.82 13.94
16 0.52 20.75 ?2.71 14.87 36 ? ? ?0.53 13.81 56 ?1.16 13.98
17 0.40 20.86 ?1.16 14.63 37 ? ? 0.00 13.94 57 ?0.69 14.16
18 0.44 20.85 ?12.57 14.29 38 ? ? ?0.75 14.15 58 ?3.09 14.29
19 0.20 20.95 ?10.85 13.87 39 ? ? ?1.79 14.01 59 ?1.48 14.25
20 1.34 21.07 ?0.59 13.80 40 ? ? ?2.75 14.03 60 ?2.23 14.12
表 2  S1HP1和S3HP1单位时间内进出水量差和水平渗透系数
图 1  S1HP1固结和渗流过程中径向应变曲线
土样 离子
种类
cB/
(mol?L?1
p/kPa ${k_{\rm h}}$/
(10?7 cm?s?1
${k_{\rm v}}$/
(10?7 cm?s?1
${r_k}$
S1 超纯水 ? 100 21.19 15.28 1.39
200 16.12 12.24 1.32
300 12.38 10.27 1.21
S2 钠离子 0.10 100 12.87 10.75 1.20
200 9.90 8.46 1.17
300 7.16 6.72 1.07
S3 钾离子 0.10 100 14.86 12.31 1.21
200 10.57 9.17 1.15
300 8.56 7.73 1.11
S4 钙离子 0.10 100 10.77 9.39 1.15
200 8.41 7.44 1.13
300 5.95 5.55 1.07
S5 钠离子 0.01 100 13.66 11.56 1.18
S6 钾离子 0.01 100 14.07 11.71 1.20
S7 钙离子 0.01 100 11.89 9.80 1.21
表 3  各压力下不同溶液中制取的重塑高岭土的渗流各向异性试验数据
图 2  重塑高岭土土颗粒排列简图
图 3  各压力下不同溶液中制取的重塑高岭土的渗透各向异性比
图 4  便携式pH计
图 5  不同微观结构下高岭土孔隙比和竖向渗透系数关系曲线
图 6  在浓度为0.10 mol/L的KCl溶液和高纯水下制取的重塑高岭土的微观示意图
图 7  不同溶液下重塑高岭土渗透各向异性比和固结压力关系曲线
图 8  在高纯水和浓度为0.10 mol/L的KCl溶液下制取的重塑高岭土(100 kPa)的SEM二值化图
图 9  在高纯水和浓度为0.10 mol/L的KCl溶液下制取的重塑高岭土(300 kPa)的SEM二值化图
S/像素 竖向孔隙数量 水平向孔隙数量
100 kPa 300 kPa 100 kPa 300 kPa
0~50 951 381 872 349
50~200 149 64 175 40
200~500 31 9 24 2
500~1 000 9 0 1 0
1 000~2 000 4 0 0 0
>2 000 1 0 0 0
合计 1 145 454 1 072 391
$\bar S$/像素 47.1 34.02 35.75 28.26
表 4  在高纯水中制取的重塑高岭土在固结压力为100、300 kPa下的孔隙分布表
图 10  不同溶液下制取的重塑高岭土的渗透各向异性比和离子浓度对数曲线
溶液类型 0.01 mol/L 0.10 mol/L
ωL ωP ωL ωP
超纯水 65.35 40.04 65.35 40.04
氯化钠 63.99 42.61 59.67 40.25
氯化钾 63.36 42.36 59.22 40.33
氯化钙 63.12 41.03 58.89 40.18
表 5  不同溶液下制取的重塑高岭土液塑限
1 刘正义. 软黏土屈服特性及各向异性屈服面方程研究[D]. 杭州: 浙江大学, 2014: 6–9.
LIU Zheng-yi. Study on yielding characteristics and anisotropic yield surface equation of soft clay [D]. Hangzhou: Zhejiang University, 2014: 6–9.
2 柯瀚, 吴小雯, 张俊, 等 基于优势流及各向异性随上覆压力变化的填埋体饱和渗流模型[J]. 岩土工程学报, 2016, 38 (11): 957- 1964
KE Han, WU Xiao-wen, ZHANG Jun, et al Modeling saturated permeability of municipal solid waste based on compression change of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (11): 957- 1964
3 ZHANG D M, MA L X, ZHANG J, et al Ground and tunnel responses induced by partial leakage in saturated clay with anisotropic permeability[J]. Engineering Geology, 2015, 189: 104- 115
doi: 10.1016/j.enggeo.2015.02.005
4 LEROUEIL S, BOUCLIN G, TAVENAS F, et al Permeability anisotropy of natural clays as a function of strain[J]. Canadian Geotechnical Journal, 1990, 27 (5): 568- 579
doi: 10.1139/t90-072
5 TAVENAS F, JEAN P, LEBLOND P, et al The permeability of natural soft clays. part Ⅱ: permeability characteristics[J]. Canadian Geotechnical Journal, 1983, 20 (4): 645- 660
doi: 10.1139/t83-073
6 ADAMS A L, GERMAINE J T, FLEMINGS P B, et al Stress induced permeability anisotropy of Resedimented Boston Blue Clay[J]. Water Resources Research, 2013, 49 (10): 6561- 6571
7 ADAMS A L, TAYLOR J, NORDQUIST, et al Permeability anisotropy and resistivity anisotropy of mechanically compressed mud rocks[J]. Canadian Geotechnical Journal, 2016, 53 (9): 1474- 1482
doi: 10.1139/cgj-2015-0596
8 REN X W, SANTAMARINA J C The hydraulic conductivity of sediments: a pore size perspective[J]. Engineering Geology, 2018, 233: 48- 54
doi: 10.1016/j.enggeo.2017.11.022
9 CHAPUIS R P Predicting the saturated hydraulic conductivity of soils: a review[J]. Bulletin of Engineering Geology and the Environment, 2012, 71 (3): 401- 434
10 曾玲玲, 洪振舜, 陈福全 压缩过程中重塑黏土渗透系数的变化规律[J]. 岩土力学, 2012, 33 (5): 1286- 1292
ZENG Ling-ling, HONG Zhen-shun, CHEN Fu-quan A law of change in permeability coefficient during compression of remolded clays[J]. Rock and Soil Mechanics, 2012, 33 (5): 1286- 1292
doi: 10.3969/j.issn.1000-7598.2012.05.002
11 邓永锋, 刘松玉, 章定文, 等. 几种孔隙比与渗透系数关系的对比[J]. 西北地震工程学报, 2011, 33(增1): 64–66.
DENG Yong-feng, LIU Song-yu, ZHANG Ding-wen, et al. Comparison among some relationships between permeability and void ratio [J]. Northwestern Seismologi Journal, 2011, 33(Suppl. 1): 64–66.
12 HORPIBULSUK S, YANGSUKKASEAM N, CHINKULKIJNIWAT A, et al Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite[J]. Applied Clay Science, 2011, 52 (1/2): 150- 159
13 SPAGNOLI G, RUBINOS D, STANJEK H, et al Undrained shear strength of clays as modified by pH variations[J]. Bulletin of Engineering Geology and the Environment, 2012, 71 (1): 135- 148
14 王宝峰. 孔隙溶液环境对黏土力学特性影响的试验研究[D]. 杭州: 浙江大学, 2017: 19–31.
WANG Bao-feng. Experimental study on the effect of pore fluid properties on the clay mechanical characteristics [D]. Hangzhou: Zhejiang University, 2017: 19–31.
15 ZAKERI A, CLUKEY E C, KEBADZE E B, et al Fatigue analysis of offshore well conductors. part I: study overview and evaluation of series 1 centrifuge tests in normally consolidated to lightly over-consolidated kaolin clay[J]. Applied Ocean Research, 2016, 57: 78- 95
doi: 10.1016/j.apor.2016.03.002
16 HODDER M S, CASSIDY M J A plasticity model for predicting the vertical and lateral behaviour of pipelines in clay soils[J]. Geotechnique, 2010, 60 (4): 247- 263
doi: 10.1680/geot.8.P.055
17 ASTM. Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter: D5084–03 [S]. West Conshohocken: ASTM, 2003: 1–12.
18 REN X, ZHAO Y, DENG Q, et al A relation of hydraulic conductivity – void ratio for soils based on Kozeny-carman equation[J]. Engineering Geology, 2016, 213: 89- 97
doi: 10.1016/j.enggeo.2016.08.017
19 BENHUR M, YOLCU G, UYSAL H, et al Soil structure changes: aggregate size and soil texture effects on hydraulic conductivity under different saline and sodic conditions[J]. Australian Journal of Soil Research, 2015, 47 (7): 688- 696
20 PILLAI R J, ROBINSON R G, BOOMINATHAN A Effect of microfabric on undrained static and cyclic behavior of kaolin clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137 (4): 421- 429
21 WAHID A S, GAJO A, MAGGIO R Chemo-mechanical effects in kaolinite. part Ⅱ: exposed samples chemical and phase analyses[J]. Géotechnique, 2011, 61 (6): 449- 457
22 MAGGIO R D, GAJO A, WAHID A S Chemo-mechanical effects in kaolinite. part Ⅰ: prepared samples[J]. Géotechnique, 2011, 61 (6): 439- 447
doi: 10.1680/geot.8.P.068
23 LIN H, PENUMADU D Experimental investigation on principal stress rotation in kaolin clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (5): 633- 642
24 KENNEY T C Permeability ratio of repeatedly layered soils[J]. Géotechnique, 1963, 13 (4): 325- 333
doi: 10.1680/geot.1963.13.4.325
25 WANG Y H, SIU W K Structure characteristics and mechanical properties of kaolinite soils. I. surface charges and structural characterizations[J]. Canadian Geotechnical Journal, 2006, 43: 601- 617
doi: 10.1139/t06-027
26 曹洋. 波浪作用下原状软粘土动力特性与微观结构关系试验研究[D]. 杭州: 浙江大学, 2013: 22–28.
CAO Yang. Experimental study on the relationship of dynamic characteristics and microstructure of intact soft under wave loading [D]. Hangzhou: Zhejiang University, 2013: 22–28.
27 冯晓腊, 沈孝宇 饱和粘性土的渗透固结特性及其微观机制的研究[J]. 水文地质工程地质, 1991, (1): 6- 12
FENG Xiao-la, SHEN Xiao-yu Permeability consolidation characteristics of saturated cohesive soil and its micro-mechanics[J]. Hydrogeology and Engineering Geology, 1991, (1): 6- 12
28 陈宝, 朱嵘, 常防震. 不同压应力作用下黏土体积变形的微观特征[J]. 岩土力学, 2011(增1): 95–99.
CHEN Bao, ZHU Rong, CHANG Fang-zhen. Microstructural characteristics of volumetric deformation of clay under different compression stresses [J]. Rock and Soil Mechanics, 2011, 32(Suppl. 1): 95–99.
29 SCHMITZ R M, SCHROEDER C, CHARLIER R Chemo-mechanical interactions in clay: a correlation between clay mineralogy and Atterberg limits[J]. Applied Clay Science, 2004, 26 (1?4): 351- 358
doi: 10.1016/j.clay.2003.12.015
[1] 孙海超,王文军,凌道盛. 低掺量水泥固化土的力学特性及微观结构[J]. 浙江大学学报(工学版), 2021, 55(3): 530-538.
[2] 王永贵,李帅鹏,HUGHESPeter,范玉辉,高向宇. 改性再生混凝土高温性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2047-2057.
[3] 闫东明,黄之昊,陈功,钱昊,邓嘉华,刘毅. 低温烧结活性瓷釉涂层钢筋耐腐蚀性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 56-63.
[4] 谢约翰,唐朝生,刘博,程青,尹黎阳,蒋宁俊,施斌. 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良[J]. 浙江大学学报(工学版), 2019, 53(8): 1438-1447.
[5] 丁智, 洪其浩, 魏新江, 张孟雅, 郑勇. 地铁列车荷载下人工冻融软土微观试验研究[J]. 浙江大学学报(工学版), 2017, 51(7): 1291-1299.
[6] 吴建奇, 杨骁, 徐旭, 刘飞禹. 部分排水条件下饱和红黏土循环试验研究[J]. 浙江大学学报(工学版), 2017, 51(7): 1309-1316.
[7] 王玉梅, 孙平, 冯浩杰, 刘军恒, 嵇乾. 柴油机燃用铁基FBC燃油的微粒排放特性[J]. 浙江大学学报(工学版), 2017, 51(10): 1981-1987.
[8] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[9] 杜明月, 田野, 金南国, 王宇纬, 金贤玉. 基于水泥水化的早龄期混凝土温湿耦合[J]. 浙江大学学报(工学版), 2015, 49(8): 1410-1416.
[10] 徐日庆,徐丽阳,邓祎文,朱亦弘. 基于SEM和IPP测定软黏土接触面积的试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1417-1425.
[11] 李蓓, 田野, 赵若轶, 段安, 李宗津, 马红岩. 聚丙烯酸酯乳液改性砂浆微观结构与改性机理[J]. 浙江大学学报(工学版), 2014, 48(8): 1345-1352.
[12] 李蓓, 田野, 赵若轶, 段安, 李宗津, 马红岩. 聚丙烯酸酯乳液改性砂浆微观结构与改性机理[J]. J4, 2014, 48(3): 0-07.
[13] 黄大中, 谢康和, 应宏伟. 渗透各向异性土层中基坑二维稳定渗流半解析解[J]. 浙江大学学报(工学版), 2014, 48(10): 1802-1808.
[14] 王海龙,董宜森,孙晓燕, 金伟良. 干湿交替环境下混凝土受硫酸盐侵蚀劣化机理[J]. J4, 2012, 46(7): 1255-1261.
[15] 李仁民, 刘松玉, 方磊, 杜延军. 采用随机生长四参数生成法构造黏土微观结构[J]. J4, 2010, 44(10): 1897-1901.