土木工程、交通工程 |
|
|
|
|
重塑高岭土渗透各向异性影响因素 |
余良贵1,2( ),周建1,2,*( ),温晓贵1,2,徐杰1,2,罗凌晖1,2 |
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058 2. 浙江大学 浙江省城市地下空间开发工程技术研究中心,浙江 杭州 310058 |
|
Factors influencing permeability anisotropy of remolded kaolin |
Liang-gui YU1,2( ),Jian ZHOU1,2,*( ),Xiao-gui WEN1,2,Jie XU1,2,Ling-hui LUO1,2 |
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China 2. Engineering Research Center of Urban Underground Development of Zhejiang Province, Zhejiang University, Hangzhou 310058, China |
引用本文:
余良贵,周建,温晓贵,徐杰,罗凌晖. 重塑高岭土渗透各向异性影响因素[J]. 浙江大学学报(工学版), 2019, 53(2): 275-283.
Liang-gui YU,Jian ZHOU,Xiao-gui WEN,Jie XU,Ling-hui LUO. Factors influencing permeability anisotropy of remolded kaolin. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 275-283.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.02.010
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I2/275
|
1 |
刘正义. 软黏土屈服特性及各向异性屈服面方程研究[D]. 杭州: 浙江大学, 2014: 6–9. LIU Zheng-yi. Study on yielding characteristics and anisotropic yield surface equation of soft clay [D]. Hangzhou: Zhejiang University, 2014: 6–9.
|
2 |
柯瀚, 吴小雯, 张俊, 等 基于优势流及各向异性随上覆压力变化的填埋体饱和渗流模型[J]. 岩土工程学报, 2016, 38 (11): 957- 1964 KE Han, WU Xiao-wen, ZHANG Jun, et al Modeling saturated permeability of municipal solid waste based on compression change of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (11): 957- 1964
|
3 |
ZHANG D M, MA L X, ZHANG J, et al Ground and tunnel responses induced by partial leakage in saturated clay with anisotropic permeability[J]. Engineering Geology, 2015, 189: 104- 115
doi: 10.1016/j.enggeo.2015.02.005
|
4 |
LEROUEIL S, BOUCLIN G, TAVENAS F, et al Permeability anisotropy of natural clays as a function of strain[J]. Canadian Geotechnical Journal, 1990, 27 (5): 568- 579
doi: 10.1139/t90-072
|
5 |
TAVENAS F, JEAN P, LEBLOND P, et al The permeability of natural soft clays. part Ⅱ: permeability characteristics[J]. Canadian Geotechnical Journal, 1983, 20 (4): 645- 660
doi: 10.1139/t83-073
|
6 |
ADAMS A L, GERMAINE J T, FLEMINGS P B, et al Stress induced permeability anisotropy of Resedimented Boston Blue Clay[J]. Water Resources Research, 2013, 49 (10): 6561- 6571
|
7 |
ADAMS A L, TAYLOR J, NORDQUIST, et al Permeability anisotropy and resistivity anisotropy of mechanically compressed mud rocks[J]. Canadian Geotechnical Journal, 2016, 53 (9): 1474- 1482
doi: 10.1139/cgj-2015-0596
|
8 |
REN X W, SANTAMARINA J C The hydraulic conductivity of sediments: a pore size perspective[J]. Engineering Geology, 2018, 233: 48- 54
doi: 10.1016/j.enggeo.2017.11.022
|
9 |
CHAPUIS R P Predicting the saturated hydraulic conductivity of soils: a review[J]. Bulletin of Engineering Geology and the Environment, 2012, 71 (3): 401- 434
|
10 |
曾玲玲, 洪振舜, 陈福全 压缩过程中重塑黏土渗透系数的变化规律[J]. 岩土力学, 2012, 33 (5): 1286- 1292 ZENG Ling-ling, HONG Zhen-shun, CHEN Fu-quan A law of change in permeability coefficient during compression of remolded clays[J]. Rock and Soil Mechanics, 2012, 33 (5): 1286- 1292
doi: 10.3969/j.issn.1000-7598.2012.05.002
|
11 |
邓永锋, 刘松玉, 章定文, 等. 几种孔隙比与渗透系数关系的对比[J]. 西北地震工程学报, 2011, 33(增1): 64–66. DENG Yong-feng, LIU Song-yu, ZHANG Ding-wen, et al. Comparison among some relationships between permeability and void ratio [J]. Northwestern Seismologi Journal, 2011, 33(Suppl. 1): 64–66.
|
12 |
HORPIBULSUK S, YANGSUKKASEAM N, CHINKULKIJNIWAT A, et al Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite[J]. Applied Clay Science, 2011, 52 (1/2): 150- 159
|
13 |
SPAGNOLI G, RUBINOS D, STANJEK H, et al Undrained shear strength of clays as modified by pH variations[J]. Bulletin of Engineering Geology and the Environment, 2012, 71 (1): 135- 148
|
14 |
王宝峰. 孔隙溶液环境对黏土力学特性影响的试验研究[D]. 杭州: 浙江大学, 2017: 19–31. WANG Bao-feng. Experimental study on the effect of pore fluid properties on the clay mechanical characteristics [D]. Hangzhou: Zhejiang University, 2017: 19–31.
|
15 |
ZAKERI A, CLUKEY E C, KEBADZE E B, et al Fatigue analysis of offshore well conductors. part I: study overview and evaluation of series 1 centrifuge tests in normally consolidated to lightly over-consolidated kaolin clay[J]. Applied Ocean Research, 2016, 57: 78- 95
doi: 10.1016/j.apor.2016.03.002
|
16 |
HODDER M S, CASSIDY M J A plasticity model for predicting the vertical and lateral behaviour of pipelines in clay soils[J]. Geotechnique, 2010, 60 (4): 247- 263
doi: 10.1680/geot.8.P.055
|
17 |
ASTM. Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter: D5084–03 [S]. West Conshohocken: ASTM, 2003: 1–12.
|
18 |
REN X, ZHAO Y, DENG Q, et al A relation of hydraulic conductivity – void ratio for soils based on Kozeny-carman equation[J]. Engineering Geology, 2016, 213: 89- 97
doi: 10.1016/j.enggeo.2016.08.017
|
19 |
BENHUR M, YOLCU G, UYSAL H, et al Soil structure changes: aggregate size and soil texture effects on hydraulic conductivity under different saline and sodic conditions[J]. Australian Journal of Soil Research, 2015, 47 (7): 688- 696
|
20 |
PILLAI R J, ROBINSON R G, BOOMINATHAN A Effect of microfabric on undrained static and cyclic behavior of kaolin clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137 (4): 421- 429
|
21 |
WAHID A S, GAJO A, MAGGIO R Chemo-mechanical effects in kaolinite. part Ⅱ: exposed samples chemical and phase analyses[J]. Géotechnique, 2011, 61 (6): 449- 457
|
22 |
MAGGIO R D, GAJO A, WAHID A S Chemo-mechanical effects in kaolinite. part Ⅰ: prepared samples[J]. Géotechnique, 2011, 61 (6): 439- 447
doi: 10.1680/geot.8.P.068
|
23 |
LIN H, PENUMADU D Experimental investigation on principal stress rotation in kaolin clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (5): 633- 642
|
24 |
KENNEY T C Permeability ratio of repeatedly layered soils[J]. Géotechnique, 1963, 13 (4): 325- 333
doi: 10.1680/geot.1963.13.4.325
|
25 |
WANG Y H, SIU W K Structure characteristics and mechanical properties of kaolinite soils. I. surface charges and structural characterizations[J]. Canadian Geotechnical Journal, 2006, 43: 601- 617
doi: 10.1139/t06-027
|
26 |
曹洋. 波浪作用下原状软粘土动力特性与微观结构关系试验研究[D]. 杭州: 浙江大学, 2013: 22–28. CAO Yang. Experimental study on the relationship of dynamic characteristics and microstructure of intact soft under wave loading [D]. Hangzhou: Zhejiang University, 2013: 22–28.
|
27 |
冯晓腊, 沈孝宇 饱和粘性土的渗透固结特性及其微观机制的研究[J]. 水文地质工程地质, 1991, (1): 6- 12 FENG Xiao-la, SHEN Xiao-yu Permeability consolidation characteristics of saturated cohesive soil and its micro-mechanics[J]. Hydrogeology and Engineering Geology, 1991, (1): 6- 12
|
28 |
陈宝, 朱嵘, 常防震. 不同压应力作用下黏土体积变形的微观特征[J]. 岩土力学, 2011(增1): 95–99. CHEN Bao, ZHU Rong, CHANG Fang-zhen. Microstructural characteristics of volumetric deformation of clay under different compression stresses [J]. Rock and Soil Mechanics, 2011, 32(Suppl. 1): 95–99.
|
29 |
SCHMITZ R M, SCHROEDER C, CHARLIER R Chemo-mechanical interactions in clay: a correlation between clay mineralogy and Atterberg limits[J]. Applied Clay Science, 2004, 26 (1?4): 351- 358
doi: 10.1016/j.clay.2003.12.015
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|