Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (8): 1438-1447    DOI: 10.3785/j.issn.1008-973X.2019.08.002
土木与建筑工程     
基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良
谢约翰1(),唐朝生1,2,*(),刘博1,程青1,尹黎阳1,蒋宁俊2,3,施斌1
1. 南京大学 地球科学与工程学院,江苏 南京 210023
2. 南京大学(苏州)高新技术研究院,江苏 苏州 215123
3. 美国夏威夷大学 土木与环境工程系,美国 夏威夷州 火奴鲁鲁 96822
Water stability improvement of clayey soil based on microbial induced calcite precipitation
Yue-han XIE1(),Chao-sheng TANG1,2,*(),Bo LIU1,Qing CHENG1,Li-yang YIN1,Ning-jun JIANG2,3,Bin SHI1
1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
2. Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, China
3. Department of Civil and Environmental Engineering, University of Hawaii, Honolulu 96822, America
 全文: PDF(1193 KB)   HTML
摘要:

采用微生物诱导碳酸钙沉积(MICP)技术对黏性土进行改性处理,以改善其水稳性与抗侵蚀能力. 利用喷洒法将配制的微生物菌液及胶结液先后喷洒至黏性土表层进行MICP处理,并开展一系列崩解试验,通过数字图像处理技术对土样的崩解过程进行定量分析和评价. 通过颗粒分析试验研究MICP改性前后土样粒度组分的变化,通过扫描电子显微镜(SEM)分析土样的微观结构特征. 结果表明:1)素土在浸水后发生快速崩解,而在相同的时间内MICP改性土样则能较好地保持原始结构,水稳性更强;2)崩解指数是描述土体崩解过程和评价土体水稳性的定量指标. MICP改性土样的崩解速率远低于素土,且最终稳定后的崩解指数仅为素土的50%;3)MICP改性能显著改变土样的粒度组分,具体表现为细颗粒质量分数减少,粗粒土质量分数增加;4)微生物诱导所产生的碳酸钙填充了土样中的大孔隙,并在土颗粒之间形成有效的胶结,极大提高土颗粒之间的联接强度,这是MICP技术提高土体水稳性的主要作用机制.

关键词: 微生物诱导碳酸钙沉积(MICP)微生物固化黏性土水稳性微观结构水土流失    
Abstract:

Microbial induced calcium carbonate precipitation (MICP) technology was adopted to improve the water stability and the erosion resistance of clayey soil. The prepared microbial solution and the cementation solution were sprayed to the surface of clayey soil by a spraying method for MICP treatment. A series of disintegration tests were carried out, and the digital picture processing technique was used to quantitatively analyze and evaluate the disintegration process. The grain size test was used to determine the change of particle size composition before and after MICP treatment, and the microstructure of the soil samples was further analyzed by the scanning electron microscope (SEM). Results showed that compared with the rapid disintegration of the raw soil after being immersed in water, the MICP treated soil sample can maintain its original structure in the same time, and the water stability is stronger. The slaking index (SI) is a quantitative indicator of describing the process of soil slaking and evaluating the water stability. The disintegration rate of the MICP treated soil was far lower than that of the raw soil, and the final SI of the MICP treated soil was only half of that of the raw soil. The MICP treatment can significantly change the particle size composition of the soil sample, i.e. the mass fraction of fine particles was reduced and the mass fraction of coarse particles was increased. Calcium carbonate precipitated by microorganisms, fills large pores of the soil, and the effective cementation between the soil particles greatly improves the strength of the connection between the soil particles, which is the main mechanism for MICP to improve the soil water stability.

Key words: microbial induced calcium carbonate precipitation (MICP)    bio-cementation    clayey soil    water stability    microstructure    soil erosion
收稿日期: 2019-02-12 出版日期: 2019-08-13
CLC:  TU 443  
通讯作者: 唐朝生     E-mail: xieyuehan@smail.nju.edu.cn;tangchaosheng@nju.edu.cn
作者简介: 谢约翰(1994—),男,硕士生,从事微生物地质工程研究. orcid.org/0000-0001-9144-7286. E-mail: xieyuehan@smail.nju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
谢约翰
唐朝生
刘博
程青
尹黎阳
蒋宁俊
施斌

引用本文:

谢约翰,唐朝生,刘博,程青,尹黎阳,蒋宁俊,施斌. 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良[J]. 浙江大学学报(工学版), 2019, 53(8): 1438-1447.

Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.08.002        http://www.zjujournals.com/eng/CN/Y2019/V53/I8/1438

参数 数值
比重Gs 2.73
塑限ωP/% 19.5
液限ωL/% 36.5
塑性指数IP 17.0
最大干密度ρd/(g·cm?3 1.71
最优的水的质量分数ωopt/% 15.7
表 1  土样的基本物理性质
图 1  土样不同处理阶段的照片
图 2  基于CIAS的土块崩解图像量化分析过程
图 3  不同时刻2种土样的崩解情况
图 4  素土和MICP改性图样崩解过程的显微镜图像
图 5  黏性土体崩解过程示意图
图 6  素土和MICP改性土样崩解指数随时间的变化关系
图 7  崩解后素土和MICP改性土样的粒度分布曲线
图 8  MICP改性黏性土样的表层微观结构照片
图 9  素土和MICP改性土样10 mm深度内的微观结构照片
1 雷廷武. 坡面土壤侵蚀动力过程与化学调控技术[M]. 北京: 科学出版社, 2010: 5-6.
2 田卫堂, 胡维银, 李军, 等 我国水土流失现状和防治对策分析[J]. 水土保持研究, 2008, 15 (4): 204- 209
TIAN Wei-tang, HU Wei-yin, LI Jun, et al The status of soil and water loss and analysis of countermeasures in china[J]. Research of Soil and Water Conservation, 2008, 15 (4): 204- 209
3 陈晓清, 崔鹏, 冯自立, 等 滑坡转化泥石流起动的人工降雨试验研究[J]. 岩石力学与工程学报, 2006, 25 (1): 106- 116
CHEN Xiao-qing, CUI Peng, FENG Zi-li, et al Artificial rainfall experimental study on landslide translation to debris flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25 (1): 106- 116
doi: 10.3321/j.issn:1000-6915.2006.01.018
4 于健, 雷廷武, ISAAC Shainberg, et al PAM特性对砂壤土入渗及土壤侵蚀的影响[J]. 土壤学报, 2011, 48 (1): 21- 27
YU Jian, LEI Ting-wu, ISAAC Shainberg, et al Effect of molecular weight and degree of hydrolysis of PAM on infiltration and erosion of sandy soil[J]. Acta Pedologica Sinica, 2011, 48 (1): 21- 27
doi: 10.11766/trxb200910220472
5 李元元, 王占礼 聚丙烯酰胺(PAM)防治土壤风蚀的研究进展[J]. 应用生态学报, 2016, 27 (3): 1002- 1008
LI Yuan-yuan, WANG Zhan-li Research progress on wind erosion control with polyacrylamide (PAM)[J]. Chinese Journal of Applied Ecology, 2016, 27 (3): 1002- 1008
6 裴向军, 杨晴雯, 许强, 等 改性钠羧甲基纤维素胶结固化土质边坡机制与抗冲蚀特性研究[J]. 岩石力学与工程学报, 2016, 35 (11): 2316- 2327
PEI Xiang-jun, YANG Qing-wen, XU Qiang, et al Research on glue reinforcement mechanism and scouring resistant properties of soil slopes by modified carboxymethyl cellulose[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (11): 2316- 2327
7 钟冰, 唐治诚 三峡库区水土流失及其防治[J]. 水土保持研究, 2001, 8 (2): 147- 149
ZHONG Bing, TANG Zhi-cheng Soil and water loss and its control in three gorges region[J]. Research of Soil and Water Conservation, 2001, 8 (2): 147- 149
doi: 10.3969/j.issn.1005-3409.2001.02.037
8 王冬梅, 张文艳, 苏新琴 城市水土流失及其防治对策[J]. 城市发展研究, 2001, (5): 49- 53
WANG Dong-mei, ZHANG Wen-yan, SU Xin-qin Counter-measures of soil and water losses in urban area[J]. Urban Studies, 2001, (5): 49- 53
doi: 10.3969/j.issn.1006-3862.2001.05.010
9 DEJON J T, SOGA K, KAVAZANJIAN E, et al Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Geotechnique, 2013, 63 (4): 287- 301
doi: 10.1680/geot.SIP13.P.017
10 何稼, 楚剑, 刘汉龙, 等 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38 (4): 643- 653
HE Jia, CHU Jian, LIU Han-long, et al Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (4): 643- 653
doi: 10.11779/CJGE201604008
11 TENG H H, DOVE P M, ORME C A, et al Thermodynamics of calcite growth: baseline for understanding biomineral formation[J]. Science, 1998, 282 (5389): 724- 727
doi: 10.1126/science.282.5389.724
12 DAVIS K J, DOVE P M, YOREO J J D The role of Mg2+ as an impurity in calcite growth [J]. Science, 2000, 290 (5494): 1134- 1137
doi: 10.1126/science.290.5494.1134
13 WEI S, CUI H, JIANG Z, et al Biomineralization processes of calcite induced by bacteria isolated from marine sediments[J]. Brazilian Journal of Microbiology, 2015, 46 (2): 455
doi: 10.1590/S1517-838246220140533
14 CARDOSO R, MONTEIRO A, FLORES-COLEN I, et al. Use of biocementation for cracks rehabilitation of different construction materials [C]// 3rd International Conference on Protection of Historical Constructions (PROHITECH'17). Lisbon: [s.n.], 2017.
15 MARTINEZ B C, DEJONG J T, GINN J, et al Experimental optimization of microbial-induced carbonate precipitation for soil improvement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139 (4): 587- 598
doi: 10.1061/(ASCE)GT.1943-5606.0000787
16 方祥位, 申春妮, 楚剑, 等 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36 (10): 2773- 2779
FANG Xiang-wei, SHEN Chun-ni, CHU Jian, et al An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2015, 36 (10): 2773- 2779
17 DEJONGJ T, FRITZGES M B, NU?SSLEIN K Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (11): 1381- 1392
doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
18 WHIFFIN V S, PAASSEN L A V, HARKES M P Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24 (5): 417- 423
doi: 10.1080/01490450701436505
19 QABANY A A, SOGA K Effect of chemical treatment used in MICP on engineering properties of cemented soils[J]. Geotechnique, 2013, 63 (4): 331- 339
doi: 10.1680/geot.SIP13.P.022
20 FENG K, MONTOYA B M Behavior of bio-mediated soil in k0 loading[J]. Geotechnical Special Publication, 2014, (243): 1- 10
21 FENG K, MONTOYA B M Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142 (1): 04015057
doi: 10.1061/(ASCE)GT.1943-5606.0001379
22 张帅, 程晓辉 微生物诱导碳酸钙结晶技术处理可液化砂土地基试验研究及数值模拟[J]. 工业建筑, 2015, (7): 23- 27
ZHANG Shuai, CHENG Xiao-hui Numerical simulation and experimental research on stabilization of liquefiable sand foundation by MICP[J]. Industrial Construction, 2015, (7): 23- 27
23 CHU J, IVANOV V, STABNIKOV V, et al Microbial method for construction of aquaculture pond in sand[J]. Geotechnique, 2013, 63 (10): 871- 875
doi: 10.1680/geot.SIP13.P.007
24 钱春香, 罗勉, 潘庆峰, 等 自修复混凝土中微生物矿化方解石的形成机制[J]. 硅酸盐学报, 2013, 5 (5): 620- 626
QIAN Chun-xiang, LUO Mian, PAN Qing-feng, et al Mechanism of microbially induced calcite precipitation in self-healing concrete[J]. Journal of the Chinese Ceramic Society, 2013, 5 (5): 620- 626
25 钱春香, 王安辉, 王欣 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36 (6): 1537- 1548
QIAN Chun-xiang, WANG An-hui, WANG Xin Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36 (6): 1537- 1548
26 刘璐, 沈扬, 刘汉龙, 等 微生物胶结在防治堤坝破坏中的应用研究[J]. 岩土力学, 2016, 37 (12): 3410- 3416
LIU Lu, SHEN Yang, LIU Han-long, et al Application of bio-cement in erosion control of levees[J]. Rock and Soil Mechanics, 2016, 37 (12): 3410- 3416
27 刘汉龙, 肖鹏, 肖杨, 等 MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40 (1): 38- 45
LIU Han-long, XIAO Peng, XIAO Yang, et al Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (1): 38- 45
doi: 10.11779/CJGE201801002
28 JIANG N J, YOSHIOKA H, YAMAMOTO K, et al Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: implication for subsea floor sand production control by microbially induced carbonate precipitation (MICP)[J]. Ecological Engineering, 2016, 90: 96- 104
doi: 10.1016/j.ecoleng.2016.01.073
29 JIANG N J, SOGA K The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures[J]. Géotechnique, 2016, 67 (1): 42- 55
30 CHENG L, CORD-RUWISCH R In situ soil cementation with ureolytic bacteria by surface percolation[J]. Ecological Engineering, 2012, 42: 64- 72
31 崔明娟, 郑俊杰, 赖汉江 菌液注射方式对微生物固化砂土动力特性影响试验研究[J]. 岩土力学, 2017, 38 (11): 3173- 3178
CUI Ming-juan, ZHENG Jun-jie, LAI Han-jiang Effect of method of biological injection on dynamic behavior for bio-cemented sand[J]. Rock and Soil Mechanics, 2017, 38 (11): 3173- 3178
32 STOCKS-FISCHER S, GALINAT J K, BANG S S Microbiological precipitation of CaCO3[J]. Soil Biology and Biochemistry, 1999, 31 (11): 1563- 1571
doi: 10.1016/S0038-0717(99)00082-6
33 MITCHELL J K, SANTAMARINA J C Biological considerations in geotechnical engineering[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (10): 1222- 1233
doi: 10.1061/(ASCE)1090-0241(2005)131:10(1222)
34 PHADNIS H S, SANTAMARINA J C Bacteria in sediments: pore size effects[J]. Géotechnique Letters, 2011, 1 (4): 91- 93
35 CHENG L, CORD-RUWISCH R, SHAHINMOHAMED A Cementation of sand soil by microbially induced calcite precipitation[J]. Canadian Geotechnical Journal, 2013, 50 (1): 81- 90
doi: 10.1139/cgj-2012-0023
36 TERZIS D, BERNIER-LATMANI R, LALOUI L Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions[J]. Applied Microbiology and Biotechnology, 2016, 60 (5): 588- 593
37 徐丹, 唐朝生, 冷挺, 等 干湿循环对非饱和膨胀土抗剪强度影响的试验研究[J]. 地学前缘, 2018, 25 (1): 286- 296
XU Dan, TANG Chao-sheng, LENG Ting, et al Shear strength of unsaturated expansive soil during weting-drying cycles[J]. Earth Science Frontiers, 2018, 25 (1): 286- 296
38 CHENU C, BISSONNAIS Y L, ARROUAYS D Organic matter influence on clay wettability and soil aggregate stability[J]. Soil Science Society of America Journal, 2000, 64 (4): 1479- 1486
doi: 10.2136/sssaj2000.6441479x
39 WIJAYA M, LEONG E C Swelling and collapse of unsaturated soils due to inundation under one-dimensional loading[J]. Indian Geotechnical Journal, 2016, 46 (3): 239- 251
doi: 10.1007/s40098-015-0172-4
40 BISSONNAIS Y L Aggregate stability and assessment of soil crustability and erodibility I: theory and methodology[J]. European Journal of Soil Science, 2010, 48 (1): 39- 48
doi: 10.1111/ejs.1996.47.issue-4
41 陈正汉, 方祥位, 朱元青 膨胀土和黄土的细观结构及其演化规律研究[J]. 岩土力学, 2009, 30 (1): 1- 11
CHEN Zheng-han, FANG Xiang-wei, ZHU Yuan-qing Research on meso-structures and their evolution laws of expansive soil and loess[J]. Rock and Soil Mechanics, 2009, 30 (1): 1- 11
doi: 10.3969/j.issn.1000-7598.2009.01.001
42 TANG C, CUI Y J, SHI B, et al Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles[J]. Geoderma, 2011, 166 (1): 111- 118
doi: 10.1016/j.geoderma.2011.07.018
43 胡节, 吴新亮, 蔡崇法 快速湿润过程中钾和钙离子浓度对土壤团聚体稳定性的影响[J]. 农业工程学报, 2017, 33 (22): 175- 182
HU Jie, WU Xin-liang, CAI Chong-fa Effect of concentration of potassium and calcium cations on soil aggregates stability during fast wetting process[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33 (22): 175- 182
doi: 10.11975/j.issn.1002-6819.2017.22.022
44 LUGATO E, SIMONETTI G, MORARI F, et al Distribution of organic and humic carbon in wet-sieved aggregates of different soils under long-term fertilization experiment[J]. Geoderma, 2010, 157 (3/4): 1- 85
45 郭伟. 湿润速率和表土团聚体粒径对红壤坡面侵蚀过程的影响[D]. 武汉: 华中农业大学, 2007.
GUO Wei. Effects of wetting rate and surface soil aggregate size on slope erosion process of red soil [D]. Wuhan: Huazhong Agricultural University, 2007.
46 王剑云, 钱春香, 王瑞兴, 等 菌液浸泡法在水泥基材料表面覆膜研究[J]. 硅酸盐学报, 2009, 37 (7): 1097- 1102
WANG Jian-yun, QIAN Chun-xiang, WANG Rui-xing, et al Application of carbonate-mineralization bacterium in surface protection of cement based materials[J]. Journal of the Chinese Ceramic Society, 2009, 37 (7): 1097- 1102
doi: 10.3321/j.issn:0454-5648.2009.07.007
47 王瑞兴, 钱春香, 王剑云, 等 水泥石表面微生物沉积碳酸钙覆膜的不同工艺[J]. 硅酸盐学报, 2008, 36 (10): 1378- 1384
WANG Rui-xing, QIAN Chun-xiang, WANG Jian-yun, et al Different treated methods of microbiologically deposited CaCO3 layer on hardened cement paste surface [J]. Journal of the Chinese Ceramic Society, 2008, 36 (10): 1378- 1384
doi: 10.3321/j.issn:0454-5648.2008.10.006
48 姚海林, 刘少军, 程昌炳 一种天然胶结土粘聚力的微观本质[J]. 岩石力学与工程学报, 2001, 20 (6): 871
YAO Hai-lin, LIU Shao-jun, CHENG Chang-bing Scopic essence of cohesion of a natural cemented soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20 (6): 871
doi: 10.3321/j.issn:1000-6915.2001.06.026
[1] 孙海超,王文军,凌道盛. 低掺量水泥固化土的力学特性及微观结构[J]. 浙江大学学报(工学版), 2021, 55(3): 530-538.
[2] 刘志明,彭劼,李杰,宋恩润. 超声波提高微生物固化砂土效果的试验研究[J]. 浙江大学学报(工学版), 2020, 54(7): 1411-1417.
[3] 王永贵,李帅鹏,HUGHESPeter,范玉辉,高向宇. 改性再生混凝土高温性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2047-2057.
[4] 闫东明,黄之昊,陈功,钱昊,邓嘉华,刘毅. 低温烧结活性瓷釉涂层钢筋耐腐蚀性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 56-63.
[5] 余良贵,周建,温晓贵,徐杰,罗凌晖. 重塑高岭土渗透各向异性影响因素[J]. 浙江大学学报(工学版), 2019, 53(2): 275-283.
[6] 王东星, 王宏伟, 肖杰. 活性MgO固化淤泥水稳特性试验研究[J]. 浙江大学学报(工学版), 2018, 52(4): 719-726.
[7] 丁智, 洪其浩, 魏新江, 张孟雅, 郑勇. 地铁列车荷载下人工冻融软土微观试验研究[J]. 浙江大学学报(工学版), 2017, 51(7): 1291-1299.
[8] 王玉梅, 孙平, 冯浩杰, 刘军恒, 嵇乾. 柴油机燃用铁基FBC燃油的微粒排放特性[J]. 浙江大学学报(工学版), 2017, 51(10): 1981-1987.
[9] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[10] 杜明月, 田野, 金南国, 王宇纬, 金贤玉. 基于水泥水化的早龄期混凝土温湿耦合[J]. 浙江大学学报(工学版), 2015, 49(8): 1410-1416.
[11] 徐日庆,徐丽阳,邓祎文,朱亦弘. 基于SEM和IPP测定软黏土接触面积的试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1417-1425.
[12] 李蓓, 田野, 赵若轶, 段安, 李宗津, 马红岩. 聚丙烯酸酯乳液改性砂浆微观结构与改性机理[J]. 浙江大学学报(工学版), 2014, 48(8): 1345-1352.
[13] 李蓓, 田野, 赵若轶, 段安, 李宗津, 马红岩. 聚丙烯酸酯乳液改性砂浆微观结构与改性机理[J]. J4, 2014, 48(3): 0-07.
[14] 王海龙,董宜森,孙晓燕, 金伟良. 干湿交替环境下混凝土受硫酸盐侵蚀劣化机理[J]. J4, 2012, 46(7): 1255-1261.
[15] 马少俊,韩同春,黄福明,王奎华. 地震荷载作用下双层填土的主动土压力计算[J]. J4, 2012, 46(3): 470-475.