Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (7): 1457-1466    DOI: 10.3785/j.issn.1008-973X.2024.07.015
交通工程、土木工程     
纳米Al2O3改良滨海水泥土的动力特性及微观机理试验研究
庄心善(),杨本驰,陶高梁
湖北工业大学 土木建筑与环境学院,湖北 武汉 430068
Dynamic characteristics and micro-mechanisms of coastal cement soil modified by nano-Al2O3
Xinshan ZHUANG(),Benchi YANG,Gaoliang TAO
School of Civil Engineering Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
 全文: PDF(4634 KB)   HTML
摘要:

在循环荷载及腐蚀环境下进行动三轴、扫描电镜、核磁共振等试验,分析纳米Al2O3改良滨海水泥土的动应力–应变、动弹性模量、阻尼比及微观孔隙变化. 试验结果表明:动应变随动应力增大而增加,动弹性模量随动应力增大而减小;加载频率增大使动应变减小,使动弹性模量增加;海盐的质量分数增大使动应变增大,使动弹性模量减小. 纳米Al2O3改良水泥土的阻尼比-动应变曲线随着加载频率的增加逐渐下移,该曲线在不同加载频率下均出现交汇点,交汇点随着海盐的质量分数增大向右移动. 相比素水泥土,纳米Al2O3改良水泥土的孔隙弛豫时间分布曲线主峰峰值及峰面积显著缩小,土孔隙中有C-S-H、C-A-H凝胶物质胶结填充,形成空间网状结构,胶结效果显著. 纳米Al2O3改良水泥土在海盐质量分数小的情况下孔隙明显减少,且孔隙率比素水泥土的更低.

关键词: 纳米Al2O3水泥土循环荷载腐蚀环境微观结构    
Abstract:

Dynamic triaxial, SEM, NMR and other tests were carried out under cyclic loading and corrosive environment to analyze the dynamic stress-strain, dynamic elastic modulus, damping ratio and microscopic pore changes in nano-Al2O3 modified coastal cement soil. Test results show that the dynamic strain increases with the increase of dynamic stress, and the dynamic elastic modulus decreases with the increase of dynamic stress. The increase in loading frequency makes the dynamic strain decrease and the dynamic elastic modulus increase. The increase in the mass fraction of set salt makes the dynamic strain increase and the dynamic elastic modulus decrease. The damping ratio-dynamic strain curve of nano-Al2O3 modified cement soil gradually moves down with the increase of loading frequency, and the intersection point of the curves appears at different loading frequencies, and the intersection point moves to the right with the increase of the mass fraction of set salt. The peak value and peak area of the main peak of the relaxation time distribution curve of the nano-Al2O3 modified cement soil were significantly lower than those of the pure cement soil, and the C-S-H and C-A-H gel substances were cemented in the soil pores to form a spatial network structure, and the cementation effect was significant. Nano-Al2O3 modified cement soil showed a significant reduction in porosity at small sea salt mass fractions and exhibited lower porosity compared to the pure cement soil.

Key words: nano-Al2O3    cement soil    cyclic loading    corrosive environment    microstructure
收稿日期: 2023-06-29 出版日期: 2024-07-01
CLC:  TU 411  
基金资助: 国家自然科学基金资助项目(51708190).
作者简介: 庄心善(1964—),男,教授,博导,从事环境岩土工程与边坡工程研究. orcid.org/0000-0001-8319-8726. E-mail:zhuangxinshan@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
庄心善
杨本驰
陶高梁

引用本文:

庄心善,杨本驰,陶高梁. 纳米Al2O3改良滨海水泥土的动力特性及微观机理试验研究[J]. 浙江大学学报(工学版), 2024, 58(7): 1457-1466.

Xinshan ZHUANG,Benchi YANG,Gaoliang TAO. Dynamic characteristics and micro-mechanisms of coastal cement soil modified by nano-Al2O3. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1457-1466.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.07.015        https://www.zjujournals.com/eng/CN/Y2024/V58/I7/1457

图 1  改良土试验材料
图 2  改良水泥土的动应力−应变曲线
图 3  不同腐蚀环境下改良水泥土动应力−应变曲线
图 4  改良水泥土动弹性模量−动应力曲线
图 5  不同频率下改良水泥土动弹性模量与海盐质量分数变化关系
图 6  改良水泥土应力-应变滞回圈
图 7  改良水泥土阻尼比−动应力曲线
图 8  不同频率下改良水泥土阻尼比与海盐质量分数变化关系
图 9  纳米Al2O3改良水泥土扫描电镜图(放大倍数为3000)
图 10  纳米Al2O3改良水泥土扫描电镜图(放大倍数为10 000)
图 11  不同腐蚀环境下纳米Al2O3改良水泥土弛豫时间分布曲线
图 12  纳米Al2O3改良前、后的水泥土弛豫时间分布曲线
图 13  纳米Al2O3改良水泥土微观作用机理模型
28 WEI Mingli, DU Yanjun, ZHANG Fan Fundamental properties of strength and deformation of cement solidified/stabilized zinc contaminated soils[J]. Rock and Soil Mechanics, 2011, 32 (Suppl.2): 306- 312
29 谢定义. 土动力学[M]. 北京: 高等教育出版社, 2011: 297–303.
30 李甜果, 孔令伟, 王俊涛, 等 基于核磁共振的季冻区膨胀土三峰孔隙结构演化特征及其力学效应[J]. 岩土力学, 2021, 42 (10): 2741- 2754
LI Tianguo, KONG Lingwei, WANG Juntao, et al Trimodal pore structure evolution characteristics and mechanical effects of expansive soil in seasonally frozen areas based on NMR test[J]. Rock and Soil Mechanics, 2021, 42 (10): 2741- 2754
1 王伟, 刘静静, 李娜, 等 纳米SiO2改性滨海水泥土的短龄期力学性能与微观机制[J]. 复合材料学报, 2022, 39 (4): 1701- 1714
WANG Wei, LIU Jingjing, LI Na, et al Mechanical properties and micro mechanism of nano-SiO2 modified coastal cement soil at short age[J]. Acta Materiae Compositae Sinica, 2022, 39 (4): 1701- 1714
2 BASHA E A, HASHIM R, MAHMUD H B, et al Stabilization of residual soil with rice husk ash and cement[J]. Construction and Building Materials, 2005, 19 (6): 448- 453
doi: 10.1016/j.conbuildmat.2004.08.001
3 AHMAD M R, CHEN B, YU J A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultrafine fly ash[J]. Composites Part B: Engineering, 2019, 168: 204- 217
doi: 10.1016/j.compositesb.2018.12.065
4 QIN L, GAO X Properties of coal gangue-Portland cement mixture with carbonation[J]. Fuel, 2019, 245: 1- 12
doi: 10.1016/j.fuel.2019.02.067
5 高常辉, 马芹永 水泥砂浆固化粉质黏土分离式Hopkinson 压杆试验与分析[J]. 复合材料学报, 2018, 35 (6): 1629- 1635
GAO Changhui, MA Qingyong Analysis of silty clay stabilized by cement mortar based on split Hopkinson pressure bar experiment[J]. Acta Materiae Compositae Sinica, 2018, 35 (6): 1629- 1635
6 万志辉, 戴国亮, 龚维明, 等 海水环境下钙质砂水泥土加固体的微观侵蚀机制试验研究[J]. 岩土力学, 2021, 42 (7): 1871- 1882
WAN Zhihui, DAI Guoliang, GONG Weiming, et al Experimental study on micro-erosion mechanism of cement stabilized calcareous sand under seawater environment[J]. Rock and Soil Mechanics, 2021, 42 (7): 1871- 1882
7 刘泉声, 屈家旺, 柳志平, 等 侵蚀影响下水泥土的力学性质试验研究[J]. 岩土力学, 2014, 35 (12): 3377- 3384
LIU Quansheng, QU Jiawang, LIU Zhiping, et al Experimental study of mechanical properties of cemented soil under corrosion influence[J]. Rock and Soil Mechanics, 2014, 35 (12): 3377- 3384
8 吴燕开, 史可健, 胡晓士, 等 海水侵蚀下钢渣粉+水泥固化土强度劣化试验研究[J]. 岩土工程学报, 2019, 41 (6): 1014- 1022
WU Yankai, SHI Kejian, HU Xiaoshi, et al Experimental study on strength degradation of steel slag + cement-solidified soil under seawater erosion[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (6): 1014- 1022
doi: 10.11779/CJGE201906004
9 闫楠, 杨俊杰, 刘强, 等 海水环境下水泥土强度衰减过程室内试验研究[J]. 土木工程学报, 2017, 50 (11): 115- 124
YAN Nan, YANG Junjie, LIU Qiang, et al Laboratory test on strength deterioration process of soil cement in seawater environment[J]. China Civil Engineering Journal, 2017, 50 (11): 115- 124
10 LIN D, LIN K L, CHANG W C, et al Improvements of nano-SiO2 on sludge/fly ash mortar[J]. Waste Management, 2008, 28 (6): 1081- 1087
doi: 10.1016/j.wasman.2007.03.023
11 KUO W T, LIN K L, CHANG W C, et al Effects of nano-materials on properties of waterworks sludge ash cement paste[J]. Journal of Industrial and Engineering Chemistry, 2006, 12 (5): 702- 709
12 王立峰, 朱向荣 纳米硅水泥土强度研究和经济分析[J]. 浙江建筑, 2005, 22 (4): 57- 60
WANG Lifeng, ZHU Xiangrong Strength study and economic analysis of nanosilica cement soil[J]. Zhejiang Construction, 2005, 22 (4): 57- 60
doi: 10.3969/j.issn.1008-3707.2005.04.024
13 OZEN M Y, DERUN E M A comparative study: effects of different nanoparticles on the properties of gold mine tailings containing cement mortars[J]. Construction and Building Materials, 2019, 202: 396- 405
doi: 10.1016/j.conbuildmat.2019.01.042
14 李刚. 纳米材料水泥土工程性状试验研究[D]. 杭州: 浙江大学, 2003.
LI Gang. Experiment study on engineering properties of nanometerial-reinforced cement-stabilized soil [D]. Hangzhou: Zhejiang University, 2003.
15 ÇELIK S, NEGAHDAR A, BAROUGH M J. Effect of nano-particles on geotechnical engineering properties of granular soils by using injection method [J]. Journal of Biochemical Technology, 2019(Special 2): 56–60.
16 MIR B A, REDDY S H Mechanical behaviour of nano-material (Al2O3) stabilized soft soil[J]. International Journal of Engineering, 2021, 34: 636- 643
17 JAHROMI S G, ZAHEDI H Investigating the effecting of nano aluminum on mechanical and volumetric properties of clay[J]. Amirkabir Journal of Civil Engineering, 2018, 50 (3): 597- 606
18 JIAN Z B, XING X D, SUN P C The effect of nanoalumina on early hydration and mechanical properties of cement pastes[J]. Construction and Building Materials, 2019, 202: 169- 176
doi: 10.1016/j.conbuildmat.2019.01.022
19 MOLA-ABASI H, KHAJEH A, SEMSANI S N, et al Effect of the ratio between porosity and SiO2 and Al2O3 on tensile strength of zeolite-cemented sands[J]. Journal of Materials in Civil Engineering, 2018, 30 (4): 1- 9
20 丁继辉, 冯俊辉, 张攀星, 等 CFG芯水泥土环组合桩复合地基动力特性试验研究[J]. 工程力学, 2015, 32 (Suppl.1): 284- 288
DING Jihui, FENG Junhui, ZHANG Panxing, et al Experimental study on dynamic characteristics of composite foundations of rammed cement-soil loop piles with CFG cores[J]. Engineering Mechanics, 2015, 32 (Suppl.1): 284- 288
doi: 10.6052/j.issn.1000-4750.2014.05.S041
21 江国龙, 陈四利, 王军祥, 等 循环荷载作用下水泥土力学特性试验研究[J]. 地下空间与工程学报, 2017, 13 (Suppl.2): 524- 528
JIANG Guolong, CHEN Sili, WANG Junxiang, et al Experimental study on mechanical properties of cement-soil under cycle load[J]. Chinese Journal of Underground Space and Engineering, 2017, 13 (Suppl.2): 524- 528
22 BIN-SHAFIQUE S, RAHMAN K, YAYKIRAN M, et al The long-term performance of two fly ash stabilized fine-grained soil subbases[J]. Resources, Conservation and Recycling, 2010, 54 (10): 666- 672
doi: 10.1016/j.resconrec.2009.11.007
23 董城, 杨献章, 刘文劼, 等 湘南红黏土公路路基压实度标准研究[J]. 公路交通科技, 2017, 34 (2): 42- 49
DONG Cheng, YANG Xianzhang, LIU Wenjie, et al Study on compaction degree criterion of red clay highway subgrade in southern Hunan[J]. Journal of Highway and Transportation Research and Development, 2017, 34 (2): 42- 49
24 罗金 室内试验公路交通荷载参数的确定[J]. 低温建筑技术, 2015, (3): 121- 123
LUO Jin Determination of traffic load parameters of highway in laboratory test[J]. Low Temperature Architecture Technology, 2015, (3): 121- 123
25 丁智, 郑勇, 魏新江, 等 不同加载频率及循环应力水平对人工冻融软土动力特性影响试验研究[J]. 铁道学报, 2020, 42 (3): 122- 128
DING Zhi, ZHENG Yong, WEI Xinjiang, et al Experimental study on the effect of different loading frequency and cyclic stress level for dynamic behaviour of artificial frozen-thawed soft soil[J]. Journal of the China Railway Society, 2020, 42 (3): 122- 128
doi: 10.3969/j.issn.1001-8360.2020.03.015
26 王元东, 唐益群, 廖少明, 等 地铁行车荷载下隧道周围加固软粘土孔压特性试验[J]. 吉林大学学报: 地球科学版, 2011, 41 (1): 188- 194
WANG Yuandong, TANG Yiqun, LIAO Shaoming, et al Experimental of pore pressure of reinforced soft clay around tunnel under subway vibrational loading[J]. Journal of Jilin University: Earth Science Edition, 2011, 41 (1): 188- 194
27 庄心善, 周睦凯, 周荣, 等 EPS改良膨胀土孔隙特征与滞回曲线形态[J]. 浙江大学学报: 工学版, 2022, 56 (7): 1353- 1362
ZHUANG Xinshan, ZHOU Mukai, ZHOU Rong, et al Pore characteristics and hysteresis curve morphology of expansive soil improved by EPS[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (7): 1353- 1362
[1] 苗泽锴,张大任,马刚,邹宇雄,陈远,周伟,肖宇轩. 基于X-ray CT原位三轴剪切试验的砂土颗粒材料微观动力学[J]. 浙江大学学报(工学版), 2023, 57(8): 1597-1606.
[2] 任建飞,周佳锦,龚晓南,俞建霖. 方桩-水泥土接触面摩擦特性试验研究[J]. 浙江大学学报(工学版), 2023, 57(7): 1374-1381.
[3] 赵爽,王奎华,吴君涛. 水平循环荷载下砂土中斜单桩累积变形特性[J]. 浙江大学学报(工学版), 2022, 56(7): 1310-1319.
[4] 杨永波,周哲. 分级循环荷载下保护层开采扰动煤岩强度及裂隙特性研究[J]. 浙江大学学报(工学版), 2022, 56(12): 2445-2453.
[5] 杨以国,刘开富,谢新宇. 循环荷载下长短桩桩网复合地基变形试验研究[J]. 浙江大学学报(工学版), 2021, 55(6): 1027-1035.
[6] 孙海超,王文军,凌道盛. 低掺量水泥固化土的力学特性及微观结构[J]. 浙江大学学报(工学版), 2021, 55(3): 530-538.
[7] 肖偲,王奎华,王孟波. 基于桩侧虚土桩模型的桩-桩芯土竖向动力响应[J]. 浙江大学学报(工学版), 2020, 54(8): 1593-1603.
[8] 李亚峰,聂如松,冷伍明,程龙虎,梅慧浩,董俊利. 间歇性循环荷载作用下细粒土的变形特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2109-2119.
[9] 闫东明,黄之昊,陈功,钱昊,邓嘉华,刘毅. 低温烧结活性瓷釉涂层钢筋耐腐蚀性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 56-63.
[10] 谢约翰,唐朝生,刘博,程青,尹黎阳,蒋宁俊,施斌. 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良[J]. 浙江大学学报(工学版), 2019, 53(8): 1438-1447.
[11] 余良贵,周建,温晓贵,徐杰,罗凌晖. 重塑高岭土渗透各向异性影响因素[J]. 浙江大学学报(工学版), 2019, 53(2): 275-283.
[12] 刘俊伟, 朱娜, 王立忠, 尚文昌. 循环荷载下砂与钢板界面的弱化机制[J]. 浙江大学学报(工学版), 2018, 52(6): 1123-1130.
[13] 丁智, 洪其浩, 魏新江, 张孟雅, 郑勇. 地铁列车荷载下人工冻融软土微观试验研究[J]. 浙江大学学报(工学版), 2017, 51(7): 1291-1299.
[14] 王玉梅, 孙平, 冯浩杰, 刘军恒, 嵇乾. 柴油机燃用铁基FBC燃油的微粒排放特性[J]. 浙江大学学报(工学版), 2017, 51(10): 1981-1987.
[15] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.