Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (6): 1185-1197    DOI: 10.3785/j.issn.1008-973X.2024.06.009
土木工程、交通工程     
轴压比和面承板厚度对混合节点抗震性能的影响
冯思远1,2(),陶宇宸1,2,金振奋2,3,赵唯坚1,2,*()
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 浙江大学 平衡建筑研究中心,浙江 杭州 310028
3. 浙江大学建筑设计研究院有限公司,浙江 杭州 310027
Effects of axial compression ratio and face-bearing plate thickness on seismic performance of hybrid joints
Siyuan FENG1,2(),Yuchen TAO1,2,Zhenfen JIN2,3,Weijian ZHAO1,2,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China
3. The Architectural Design and Research Institute of Zhejiang University Co. Ltd, Hangzhou 310027, China
 全文: PDF(4368 KB)   HTML
摘要:

为了研究新型柱全截面隔板式钢筋混凝土柱-钢梁(RCS)混合框架节点形式的抗震性能,考虑不同轴压比和面承板厚度的影响,对2组共6个3/4比例的梁柱节点进行低周往复加载试验研究. 试验中所有试件均发生设计预期的节点剪切破坏,滞回曲线呈弓型,表明节点具有良好的抗震性能. 试件最终因节点区的混凝土开裂剥落而丧失承载力. 试验结果表明,当轴压比为0~0.25时,随着轴压比的增大, RCS节点开裂荷载有所增大,峰值荷载前斜裂缝数量减少、宽度减小,试件的承载力、刚度和耗能能力均有所提高. 节点域柱纵筋黏结应力随轴压比增大而减小,表明节点域内黏结状况有明显改善. 相较于单向面承板试件,双向面承板试件在承载能力、延性和耗能能力方面均表现出显著提高;当双向面承板厚度由6 mm增加至10 mm时,试件峰值承载力和刚度的提升幅度相对有限.

关键词: 钢筋混凝土柱-钢梁梁柱节点轴压比面承板抗震性能    
Abstract:

The influence of different axial compression ratios and face-bearing plate thicknesses was considered, in order to investigate the seismic performance of a new whole column-section diaphragm type reinforced concrete column-steel beam (RCS) hybrid frame joint. Two groups of six 3/4 scaled beam-column joints were subjected to low-cycle reversed loading tests. All specimens experienced the expected joint shear failure, and the hysteresis curve showed a bow shape which indicated that a good seismic performance was available for the novel joints. Eventually, the specimens lost their bearing capacity due to concrete cracking and spalling in the joint region. The test results showed that, within the range of axial compression ratios from 0 to 0.25, the cracking load of the RCS joints increased with the increase of the axial compression ratio. The number of diagonal cracks appearing during the phase preceding the peak load diminished, accompanied by a reduction in their width, and the bearing capacity, stiffness, and energy dissipation capacity of the specimens all improved. The bonding stress within the joint region also diminished as the axial compression ratio increased, indicating a pronounced enhancement in the bonding condition within the joint. Compared to the unidirectional face-bearing plate specimens, the bidirectional face-bearing plate specimens exhibit significant improvements in bearing capacity, ductility, and energy dissipation capacity. The increase in the thickness of the bidirectional face-bearing plate from 6 mm to 10 mm has a relatively limited effect on the peak bearing capacity and stiffness of the specimens.

Key words: reinforced concrete column-steel beam    beam-column joint    axial compression ratio    face-bearing plate    seismic performance
收稿日期: 2023-05-23 出版日期: 2024-05-25
CLC:  TU 398  
基金资助: 国家自然科学基金资助项目(51879230);浙江大学平衡建筑研究中心研发计划资助项目(K-20203512-15C).
通讯作者: 赵唯坚     E-mail: 22112263@zju.edu.cn;zhaoweijian@zju.edu.cn
作者简介: 冯思远(1998—),男,硕士生,从事装配式结构研究. orcid.org/0009-0000-8080-994X. E-mail:22112263@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
冯思远
陶宇宸
金振奋
赵唯坚

引用本文:

冯思远,陶宇宸,金振奋,赵唯坚. 轴压比和面承板厚度对混合节点抗震性能的影响[J]. 浙江大学学报(工学版), 2024, 58(6): 1185-1197.

Siyuan FENG,Yuchen TAO,Zhenfen JIN,Weijian ZHAO. Effects of axial compression ratio and face-bearing plate thickness on seismic performance of hybrid joints. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1185-1197.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.06.009        https://www.zjujournals.com/eng/CN/Y2024/V58/I6/1185

图 1  RCS节点的面板剪切破坏和垂向承压破坏
试件名称$n$面承板形式$t$/mm
J-B-a00单向面承板10
J-B-a140.14单向面承板10
J-B-a250.25单向面承板10
J-BB60.14双向面承板6
J-BB80.14双向面承板8
J-BB100.14双向面承板10
表 1  节点试件主要参数
图 2  试件几何尺寸及配筋
图 3  RCS节点形式照片
图 4  RCS节点核心区平面图
图 5  拟静力试验加载装置
图 6  梁端位移加载制度
批次试件构件类型fy /MPafu /MPaEs /(105 MPa)A/%fcu /MPa
第1批J-B-a14
J-BB10
18 mm钢板3565361.9921.3
10 mm钢板3615161.9224.258
$\phi $22 mm钢筋4266032.0059
$\phi $8 mm钢筋4846342.09
第2批J-B-a0
J-B-a25
J-BB6
J-BB8
18 mm钢板3915372.0123.0
10 mm钢板4145591.9823.151
8 mm钢板4095561.9925.052
6 mm钢板4905961.9721.350
$\phi $22 mm钢筋4146041.9928.550
$\phi $8 mm钢筋4716432.0221.7
表 2  钢材与混凝土材料性能
图 7  试件的裂缝开展和破坏形态
图 8  试件滞回曲线
图 9  节点试件荷载-位移骨架曲线
试件名称Pcr/kNPy/kNΔy/mmPmax/kNΔmax/mmPu/kNΔu/mmμ
J-B-a058172.9836.47197.1673.840167.59132.173.63
J-B-a14119207.4128.48242.2343.090205.90106.643.74
J-B-a25154216.0528.16248.5545.030211.27116.074.12
J-BB6137230.7635.78268.1373.005227.91126.573.54
J-BB8135243.1137.63280.7589.460238.64130.893.48
J-BB10140253.7933.81293.7058.800249.64104.403.09
表 3  试件特征点参数
图 10  设计参数对试件承载力的影响
图 11  节点试件的承载力退化曲线
图 12  节点试件的刚度退化曲线
图 13  节点试件的累积耗能曲线
图 14  节点中部箍筋应变-位移角曲线
图 15  节点中部箍筋应变对比
图 16  节点外部箍筋荷载-应变曲线
图 17  节点上方纵筋测点荷载-应变曲线
图 18  节点平均黏结应力曲线
图 19  平面外面承板中部荷载-切应变曲线
1 TAO Y, ZHAO W, SHU J, et al Nonlinear finite-element analysis of the seismic behavior of RC column-steel beam connections with shear failure mode[J]. Journal of Structural Engineering, 2021, 147 (10): 04021160
doi: 10.1061/(ASCE)ST.1943-541X.0003132
2 PARRA-MONTESINOS G, WIGHT J K Seismic response of exterior RC column-to-steel beam connections[J]. Journal of Structural Engineering, 2000, 126 (10): 1113- 1121
doi: 10.1061/(ASCE)0733-9445(2000)126:10(1113)
3 DEIERLEIN G G, SHEIKH T M, YURA J A, et al Beam-column moment connections for composite frames: part 2[J]. Journal of Structural Engineering, 1989, 115 (11): 2877- 2896
doi: 10.1061/(ASCE)0733-9445(1989)115:11(2877)
4 SHEIKH T M, DEIERLEIN G G, YURA J A, et al Beam-column moment connections for composite frames: part 1[J]. Journal of Structural Engineering, 1989, 115 (11): 2858- 2876
doi: 10.1061/(ASCE)0733-9445(1989)115:11(2858)
5 ASCE Task Committee on Design Criteria for Composite Structures in Steel and Concrete Guidelines for design of joints between steel beams and reinforced concrete columns[J]. Journal of Structural Engineering, 1994, 120 (8): 2330- 2357
doi: 10.1061/(ASCE)0733-9445(1994)120:8(2330)
6 BABA N, NISHIMURA Y. Seismic behavior of RC column-s beam moment frames [C]// 12th World Conference on Earthquake Engineering . Auckland: New Zealand Society for Earthquake Engineering, 2000.
7 BABA N, NISHIMURA Y. Stress transfer on through beam type steel beam-reinforced concrete column joints [C]// 6th ASCCS International Conference on Steel-Concrete Composite Structures . Los Angeles: University of Southern California, 2000, 2: 1183−1190.
8 NISHIYAMA I, KURAMOTO H, ITADANI H, et al. Bi-directional behavior of interior-, exterior-, and corner-joints of RCS system [C]// 12th World Conference on Earthquake Engineering . Auckland: New Zealand Society for Earthquake Engineering, 2000.
9 NOGUCHI H, UCHIDA K. Fem analysis of hybrid structural frames with R/C columns and steel beams [C]// 6th ASCCS International Conference on Steel-Concrete Composite Structures . Los Angle: University of Southern California, 2000, 1099−1106.
10 ALIZADEH S, ATTARI N K A, KAZEMI M T Experimental investigation of RCS connections performance using self-consolidated concrete[J]. Journal of Constructional Steel Research, 2015, 114: 204- 216
doi: 10.1016/j.jcsr.2015.07.026
11 MA H, DONG J, LIU Y, et al Cyclic loading tests and shear strength of composite joints with steel-reinforced recycled concrete columns and steel beams[J]. Engineering Structures, 2019, 199: 109605
doi: 10.1016/j.engstruct.2019.109605
12 KHALOO A, DOOST R B Seismic performance of precast RC column to steel beam connections with variable joint configurations[J]. Engineering Structures, 2018, 160: 408- 418
doi: 10.1016/j.engstruct.2018.01.039
13 LEE H J, PARK H G, HWANG H J, et al Cyclic lateral load test for RC column-steel beam joints with simplified connection details[J]. Journal of Structural Engineering, 2019, 145 (8): 04019075
doi: 10.1061/(ASCE)ST.1943-541X.0002369
14 NGUYEN X H, NGUYEN Q H, LE D D, et al Experimental study on seismic performance of new RCS connection[J]. Structures, 2017, 9: 53- 62
15 杨建江, 郝志军 钢梁-钢筋混凝土柱节点在低周反复荷载作用下受力性能的试验研究[J]. 建筑结构, 2001, 31 (7): 35- 38
YANG Jianjiang, HAO Zhijun Experimental study on behavior of steel beam-RC column joint under the reversed load[J]. Building Structure, 2001, 31 (7): 35- 38
16 易勇. 钢梁-钢筋混凝土柱组合框架中间层中节点抗震性能试验研究[D]. 重庆: 重庆大学, 2005.
YI Yong. Experimental research on seismic behavior of interior joint in the composite frame consisting of steel beams and reinforced concrete columns. [D]. Chongqing: Chongqing University, 2005.
17 戴绍斌, 黄俊, 张亮权, 等 钢梁与混凝土墙螺栓连接节点受力性能研究[J]. 武汉理工大学学报, 2007, 29 (11): 103- 107
DAI Shaobin, HUANG Jun, ZHANG Liangquan, et al Research on mechanical performance of high strength bolt connection joint between steel beam and concrete wall[J]. Journal of Wuhan University of Technology, 2007, 29 (11): 103- 107
18 门进杰, 郭智峰, 史庆轩, 等 钢筋混凝土柱-腹板贯通型钢梁混合框架中节点抗震性能试验研究[J]. 建筑结构学报, 2014, 35 (8): 72- 79
MEN Jinjie, GUO Zhifeng, SHI Qingxuan, et al Research on mechanical performance of high strength bolt connection joint between steel beam and concrete wall[J]. Journal of Building Structures, 2014, 35 (8): 72- 79
19 郭智峰, 门进杰, 史庆轩, 等 钢筋混凝土柱-钢梁组合节点力学性能初探[J]. 土木工程学报, 2013, (Suppl. 1): 101- 105
GUO Zhifeng, MEN Jinjie, SHI Qingxuan, et al Study of the joint of reinforced concrete column to steel beam[J]. China Civil Engineering Journal, 2013, (Suppl. 1): 101- 105
20 LING Y, ZHENG W, LI Y, et al Study on seismic behavior of reinforced concrete column-steel beam side joints[J]. Journal of Asian Architecture and Building Engineering, 2020, 19 (3): 187- 202
21 LING Y, XU J, GUO Z, et al A study on static behavior of new reinforced concrete column-steel beam composite joints[J]. Journal of Asian Architecture and Building Engineering, 2021, 20 (1): 44- 60
doi: 10.1080/13467581.2020.1816547
22 李贤, 肖岩, 毛炜烽 钢筋混凝土柱-钢梁节点的抗震性能研究[J]. 湖南大学学报:自然科学版, 2007, 34 (2): 1- 5
LI Xian, XIAO Yan, MAO Weifeng Experimental research on seismic behavior of reinforced concrete column-to-steel beam joints with bolted end-plate[J]. Journal of Hunan University: Natural Sciences, 2007, 34 (2): 1- 5
23 郭子雄, 朱奇云, 刘阳, 等 装配式钢筋混凝土柱-钢梁框架节点抗震性能试验研究[J]. 建筑结构学报, 2012, 33 (7): 98- 105
GUO Zixiong, ZHU Qiyun, LIU Yang, et al Experimental study on seismic behavior of a new type of prefabricated RC column-steel beam frame connections[J]. Journal of Building Structures, 2012, 33 (7): 98- 105
24 刘阳, 郭子雄, 戴镜洲, 等 不同破坏机制的装配式RCS框架节点抗震性能试验研究[J]. 土木工程学报, 2013, 46 (3): 18- 28
LIU Yang, GUO Zixiong, DAI Jingzhou, et al Experimental study on seismic behavior of prefabricated RCS frame joints with different failure mechanisms[J]. China Civil Engineering Journal, 2013, 46 (3): 18- 28
25 陆铁坚, 贺子瑛, 余志武, 等 钢-混凝土组合梁与混凝土柱节点的抗震性能试验研究[J]. 建筑结构学报, 2008, (1): 70- 74
LU Tiejian, HE Ziying, YU Zhiwu, et al Experimental research on seismic behavior of SC beam to RC column connection[J]. Journal of Building Structures, 2008, (1): 70- 74
26 LI W, YE H, WANG Q, et al Experimental study on the seismic performance of demountable RCS joints[J]. Journal of Building Engineering, 2022, 49: 104082
doi: 10.1016/j.jobe.2022.104082
27 李国强, 段炼, 陆烨, 等 H型钢梁与矩形钢管柱外伸式端板单向螺栓连接节点承载力试验与理论研究[J]. 建筑结构学报, 2015, 36 (9): 91- 100
LI Guoqiang, DUAN Lian, LU Ye, et al Experimental and theoretical study of bearing capacity for extended endplate connections between rectangular tubular columns and H-shaped beams with single direction bolts[J]. Journal of Building Engineering, 2015, 36 (9): 91- 100
28 中华人民共和国国家标准. 金属材料室温拉伸试验方法: GB/T228—2002 [S]. 北京: 中国标准出版社, 2002.
29 中国工程建设标准化协会. 约束混凝土柱组合梁框架结构技术规程: CECS347—2013 [S]. 北京: 中国建筑工业出版社, 2013.
30 PARRA-MONTESINOS G, WIGHT J K Modeling shear behavior of hybrid RCS beam-column connections[J]. Journal of Structural Engineering, 2001, 127 (1): 3- 11
doi: 10.1061/(ASCE)0733-9445(2001)127:1(3)
[1] 谢国庆,王密,孔德文. 新型高强硅酸盐墙板钢框架抗震性能[J]. 浙江大学学报(工学版), 2023, 57(7): 1402-1409.
[2] 焦志安,魏建鹏,郭杨,戴良军,田黎敏. 新型可恢复功能半刚性节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2023, 57(6): 1090-1099.
[3] 佘振扬,黎雅乐,李雪红,徐秀丽,刘径恺. 带耗能系梁的摇摆自复位双肢薄壁高墩抗震性能研究[J]. 浙江大学学报(工学版), 2023, 57(5): 977-987.
[4] 鲁海波,张广泰,刘诗拓,李雪藩,韩霞. 盐渍土环境下聚丙烯纤维混凝土柱抗震性能[J]. 浙江大学学报(工学版), 2023, 57(1): 111-121.
[5] 邓明科,靳梦娜,郭莉英,马福栋,刘华政. 超高性能混凝土连接装配式柱抗震性能试验研究[J]. 浙江大学学报(工学版), 2022, 56(10): 1995-2006.
[6] 李通,王新武,时强,布欣,孙海粟. 可替换式偏心支撑钢框架抗震性能[J]. 浙江大学学报(工学版), 2021, 55(9): 1725-1733.
[7] 冯帅克,郭正兴,倪路瑶,李国建,宫长义,谢超,满建政. 钢管混凝土柱-混合梁节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2021, 55(8): 1464-1472.
[8] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[9] 褚云朋,王秀丽,姚勇. 冷弯薄壁型钢墙体-楼板节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2019, 53(4): 732-742.
[10] 徐强, 郑山锁, 李晓昇. 考虑近海环境劣化作用的钢框架节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2018, 52(12): 2314-2321.
[11] 尹世平, 李耀, 杨扬, 叶桃. 纤维编织网增强混凝土加固RC柱抗震性能的影响因素[J]. 浙江大学学报(工学版), 2017, 51(5): 904-913.
[12] 韩冬, 布欣, 王新武, 蒋沧如. 空间剖分T型钢梁柱连接角柱节点抗震试验[J]. 浙江大学学报(工学版), 2017, 51(2): 287-296.
[13] 李英民, 杨龙, 刘烁宇, 罗文文. 基于可恢复指标的结构损伤机制评价方法[J]. 浙江大学学报(工学版), 2017, 51(11): 2197-2206.
[14] 余志武, 彭晓丹, 国巍, 彭妙培. 装配式剪力墙U型套箍连接节点抗震性能[J]. 浙江大学学报(工学版), 2015, 49(5): 975-984.
[15] 王琼,邓华. 罕遇地震下弦支穹顶的弹塑性动力响应分析[J]. J4, 2013, 47(11): 1889-1895.