Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (10): 2126-2132    DOI: 10.3785/j.issn.1008-973X.2023.10.021
土木工程     
微生物作用下含有机质沉积物起动的定量研究
占斯宁1(),袁栋栋2,林永钢3,张仪萍1,周永潮1,*(),张土乔1
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 中国电建集团环境工程有限公司,浙江 杭州 310058
3. 中电建路桥集团有限公司,浙江 杭州 310058
Quantitative study on incipient motion of organic sediments with bio-adhesive effect
Si-ning ZHAN1(),Dong-dong YUAN2,Yong-gang LIN3,Yi-ping ZHANG1,Yong-chao ZHOU1,*(),Tu-qiao ZHANG1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
2. Powerchina Environmental Epaperngineering Co Ltd., Hangzhou, 310058, China
3. Powerchina Roadbridge Group Co Ltd., Hangzhou, 310058, China
 全文: PDF(972 KB)   HTML
摘要:

为了探究微生物作用对沉积物起动规律的影响,提出考虑微生物培养时间和有机质含量的沉积物临界起动剪切应力计算方法. 通过明渠冲刷试验分析了微生物培养时间及有机质含量对沉积物临界起动剪切应力的影响规律;引入絮体强度常数γ值对微生物黏性作用进行定量表征;基于沉积物起动理论,提出在微生物作用下沉积物的临界起动剪切应力经验公式. 结果表明,随着微生物作用时间的增加,临界起动剪切应力先增大后减小,并在10或15 d左右达到峰值,最终达到0.072~0.117 N/m2. 临界起动剪切应力随着有机质含量的增大而减小. 微生物黏性作用与γ值呈现显著的负相关,皮尔逊相关系数为?0.767,临界起动剪切应力公式计算值与实验值较为吻合.

关键词: 沉积物微生物活动有机质含量临界起动剪切应力絮体强度    
Abstract:

A calculation method of the critical shear stress considering the microbial incubation time and organic matter content was proposed to study the influence of microbial biofilm on the erosion behavior of sediment. An open channel flume experiment was conducted to analyze the effects of microbial incubation time and organic matter content on the critical shear stress. The stable floc size constant γ was introduced to quantify the bio-adhesive effect. An empirical formula for the critical shear stress of sediment initiation with organic matter under microbial activity was proposed based on the theory of sediment initiation. Results showed that the critical shear stress increased first and then decreased over time. The peak value was reached around 10 or 15 days, and the critical shear stress reached 0.072~0.117 N/m2. The critical starting shear stress decreased with the increase of organic matter content. The correlation between the bio-adhesive effect and γ was calculated and a significant negative correlation was found. Pearson correlation coefficient was ?0.767. The calculated value of the critical starting shear stress formula was in good agreement with the experimental value.

Key words: sewer sediment    biological activities    organic matter content    critical shear stress    floc strength
收稿日期: 2022-12-01 出版日期: 2023-10-18
CLC:  TV 142.1  
基金资助: 国家自然科学基金资助项目(51878597)
通讯作者: 周永潮     E-mail: 22012243@zju.edu.cn;zhoutang@zju.edu.cn
作者简介: 占斯宁(1998—),女,硕士生,从事城市排水管道沉积物管理研究. orcid.org/0000-0003-3567-1384. E-mail: 22012243@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
占斯宁
袁栋栋
林永钢
张仪萍
周永潮
张土乔

引用本文:

占斯宁,袁栋栋,林永钢,张仪萍,周永潮,张土乔. 微生物作用下含有机质沉积物起动的定量研究[J]. 浙江大学学报(工学版), 2023, 57(10): 2126-2132.

Si-ning ZHAN,Dong-dong YUAN,Yong-gang LIN,Yi-ping ZHANG,Yong-chao ZHOU,Tu-qiao ZHANG. Quantitative study on incipient motion of organic sediments with bio-adhesive effect. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2126-2132.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.10.021        https://www.zjujournals.com/eng/CN/Y2023/V57/I10/2126

图 1  小型明渠冲刷试验的装置图
图 2  圆筒搅拌试验装置的示意图
N/(r·min?1) G/s?1
160 78.93
175 90.29
190 102.15
205 114.48
220 127.27
表 1  圆筒搅拌试验的搅拌转速及速度梯度
目数 ρ/(g·cm?3) d50/mm Cu
60 1.409 0.427 1.51
表 2  塑料沙的物理参数
序号 T/d OMC/% 序号 T/d OMC/% 序号 T/d OMC/%
1 0 2.0 13 10 5.0 25 20 8.0
2 0 3.5 14 10 6.5 26 25 2.0
3 0 5.0 15 10 8.0 27 25 3.5
4 0 6.5 16 15 2.0 28 25 5.0
5 0 8.0 17 15 3.5 29 25 6.5
6 5 2.0 18 15 5.0 30 25 8.0
7 5 3.5 19 15 6.5 31 30 2.0
8 5 5.0 20 15 8.0 32 30 3.5
9 5 6.5 21 20 2.0 33 30 5.0
10 5 8.0 22 20 3.5 34 30 6.5
11 10 2.0 23 20 5.0 35 30 8.0
12 10 3.5 24 20 6.5
表 3  沉积物试样的培养时间及有机质含量
图 3  不同工况下的临界起动剪切应力图
图 4  不同G值下沉积物试样的絮体平均直径
图 5  沉积物试样絮体强度常数随时间变化的示意图
图 6  絮体强度常数计算值与实验值的对比结果
图 7  生物黏性作用与絮体强度常数的关系
图 8  临界剪切应力计算值与实验值的对比结果
1 朱永明. 合流制排水管道沉积物调查研究[D]. 武汉: 武汉理工大学, 2011: 9-11.
ZHU Yong-ming. Research on sediment in combined sewer [D]. Wuhan: Wuhan University of Technology, 2011: 9-11.
2 BANASIAK R Hydraulic performance of sewer pipes with deposited sediments[J]. Water Science and Technology, 2008, 57 (11): 1743- 1748
doi: 10.2166/wst.2008.287
3 MONTES C, BERARDI L, KAPELAN Z, et al Predicting bedload sediment transport of non-cohesive material in sewer pipes using evolutionary polynomial regression–multi-objective genetic algorithm strategy[J]. Urban Water Journal, 2020, 17 (2): 154- 162
doi: 10.1080/1573062X.2020.1748210
4 MONTES C, KAPELAN Z, SALDARRIAGA J Predicting non-deposition sediment transport in sewer pipes using random forest[J]. Water Research, 2021, 189: 116639
doi: 10.1016/j.watres.2020.116639
5 黄乃先, 齐一凡, 金伟 排水管道沉积物控制的研究进展[J]. 环境工程技术学报, 2021, 11 (3): 507- 513
HUANG Nai-xian, QI Yi-fan, JIN Wei Research progress on the control of sediments in the drainage pipe[J]. Journal of Environmental Engineering Technology, 2021, 11 (3): 507- 513
6 SHIELDS A. Application of similarity principles and turbulence research to bed-load movement [D]. California: California Institute of Technology, 1936: 9-20.
7 TAIT S J, RUSHFORTH P J, SAULA J A laboratory study of the erosion and transport of cohesive-like sediment mixtures in sewers[J]. Water Science and Technology, 1998, 37 (1): 163- 170
doi: 10.2166/wst.1998.0040
8 方红卫, 尚倩倩, 府仁寿, 等 泥沙颗粒生长生物膜后起动的实验研究——Ⅱ: 起动流速计算[J]. 水科学进展, 2011, 22 (3): 301- 306
FANG Hong-wei, SHANG Qian-qian, FU Ren-shou, et al Experimental study of the effect of biofilm formation on sediment incipient motion Ⅱ: incipient velocity calculation[J]. Advances in Water Science, 2011, 22 (3): 301- 306
9 FANG H, SHANG Q, CHEN M, et al Changes in the critical erosion velocity for sediment colonized by biofilm[J]. Sedimentology, 2014, 61 (3): 648- 659
doi: 10.1111/sed.12065
10 SECO I, GOMEZ VALENTIN M, SCHELLART A, et al Erosion resistance and behavior of highly organic in-sewer sediment[J]. Water Science and Technology, 2014, 69 (3): 672- 679
doi: 10.2166/wst.2013.761
11 ZHOU Y, YAO X, GU Y, et al Biological effects on incipient motion behavior of sediments with different organic matter content[J]. Journal of Soils and Sediments, 2021, 21 (1): 627- 640
doi: 10.1007/s11368-020-02807-9
12 马妍. 排水系统管内沉积物的冲蚀输移特性与规律研究[D]. 杭州: 浙江大学, 2014: 35-36.
MA Yan. Study on erosion characteristics and transport principles of sewer sediment in sewerage system [D]. Hangzhou: Zhejiang University, 2014: 35-36.
13 钱宁, 万兆惠. 泥沙运动力学[M]. 北京: 科学出版社, 1983: 85-105.
14 LICK W, JIN L, GAILANI J Initiation of movement of quartz particles[J]. Journal of Hydraulic Engineering, 2004, 130 (8): 755- 761
doi: 10.1061/(ASCE)0733-9429(2004)130:8(755)
15 CAMP T R Velocity gradients and internal work in fluid motion[J]. Journal of the Boston Society of Civil Engineers, 1943, 30: 219- 230
16 YIN W, WANG Y, LIU L, et al Biofilms: the microbial “protective clothing” in extreme environments[J]. International Journal of Molecular Sciences, 2019, 20 (14): 3423
doi: 10.3390/ijms20143423
17 AMOS C L, DROPPO I G, GOMEZ E A, et al The stability of a remediated bed in Hamilton Harbour, Lake Ontario, Canada[J]. Sedimentology, 2003, 50 (1): 149- 168
doi: 10.1046/j.1365-3091.2003.00542.x
18 WILEN B M, JIN B, LANT P The influence of key chemical constituents in activated sludge on surface and flocculating properties[J]. Water Research, 2003, 37 (9): 2127- 2139
doi: 10.1016/S0043-1354(02)00629-2
19 LI X Y, YANG S F Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41 (5): 1022- 1030
doi: 10.1016/j.watres.2006.06.037
20 尚倩倩, 方红卫, 赵慧明, 等 泥沙颗粒生长生物膜后沉降的实验研究Ⅰ: 实验设计及粒径变化[J]. 水利学报, 2012, 43 (3): 275- 281
SHANG Qian-qian, FANG Hong-wei, ZHAO Hui-ming, et al Experiment on the biofilm effects on sediment setting Ⅰ: experimental design and grading variation[J]. Journal of Hydraulic Engineering, 2012, 43 (3): 275- 281
21 RIGHETTI M, LUCARELLI C May the Shields theory be extended to cohesive and adhesive benthic sediments?[J]. Journal of Geophysical Research: Oceans, 2007, 112 (5): 1- 14
22 LEENTVAAR J, REBHUN M Strength of ferric hydroxide flocs[J]. Water Research, 1983, 17 (8): 895- 902
doi: 10.1016/0043-1354(83)90163-X
23 PARKER D S, KAUFMAN W J, JENKINS D Floc breakup in turbulent flocculation processes[J]. Journal of the Sanitary Engineering Division, 1972, 98 (1): 79- 99
doi: 10.1061/JSEDAI.0001389
24 钱栋. 生物作用下排水管道沉积物起动规律研究[D]. 杭州: 浙江大学, 2017: 42-45.
QIAN Dong. Study on laws for the incipient motion of sewer sediments with biological activities [D]. Hangzhou: Zhejiang University, 2017: 42-45.
[1] 郭进,陈家旺,王豪,王荧,王威,方玉平,周朋. 沉积物上覆水界面取样器及配套转移装置设计[J]. 浙江大学学报(工学版), 2023, 57(5): 1021-1029.
[2] 王辉, 郇筱林, 陈宇琪, 周博, 薛世峰, 林英松. 考虑温—压耦合影响的水合物沉积物宏细观Duncan-Chang损伤模型[J]. 浙江大学学报(工学版), 2021, 55(9): 1734-1743.
[3] 邵卫云, 马妍, 周永潮, 杜旭, 关垚. 生物作用下排水管道沉积物的冲蚀特性[J]. 浙江大学学报(工学版), 2014, 48(6): 1075-1079.
[4] 徐日庆,畅帅,俞元洪,陆建阳. 基于响应面法的杭州海相软土固化强度模型[J]. 浙江大学学报(工学版), 2014, 48(11): 1941-1946.
[5] 李世伦 程毅 秦华伟 顾临怡 叶瑛 邱敏秀. 重力活塞式天然气水合物保真取样器的研制[J]. J4, 2006, 40(5): 888-892.
[6] 朱亮 顾临怡 秦华伟. 深海沉积物保真采样技术及应用[J]. J4, 2005, 39(7): 1060-1063.